答案:3 解析:當(dāng)x∈(-∞.1.值域應(yīng)為[.+∞).當(dāng)x∈時(shí)值域應(yīng)為. ∴y=.y∈.∴此時(shí)x∈.∴l(xiāng)og81x=.x=81=3 ※65.答案:如圖2-18所示. 解析:由圖中的沙化面積可以利用=平均面積.因?yàn)轭}中是分了五六十年代.六七十年代.九十年代三段. 所以可分別求出三段的平均面積=16. =21.=25 查看更多

 

題目列表(包括答案和解析)

已知f(x)=(1+
2
x-1
)-2(x>1)

(1)求函數(shù)f(x)的反函數(shù)f-1(x)的解析式及其定義域;
(2)判斷函數(shù)f-1(x)在其定義域上的單調(diào)性并加以證明;
(3)若當(dāng)x∈(
1
16
,
1
4
]
時(shí),不等式(1-
x
).f-1(x)>a(a-
x
)
恒成立,試求a的取值范圍.

查看答案和解析>>

函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)的解析式為f(x)=
2x
-1

(1)求f(-1)的值;
(2)用定義證明f(x)在(0,+∞)上是減函數(shù);
(3)求當(dāng)x<0時(shí),函數(shù)的解析式.

查看答案和解析>>

定義在實(shí)數(shù)集R上的偶函數(shù)f(x)的最小值為3,且當(dāng)x≥0時(shí),f(x)=3ex+a,其中e是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)的解析式.(2)求最大的整數(shù)m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤3ex.

查看答案和解析>>

已知函數(shù)y=f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-2x+3,則當(dāng)x<0時(shí),f(x)的解析式( 。
A、f(x)=-x2+2x-3B、f(x)=-x2-2x-3C、f(x)=x2-2x+3D、f(x)=-x2-2x+3

查看答案和解析>>

已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)的最小值為3,且當(dāng)x≥0時(shí),f(x)=3ex+a(a為常數(shù)).
(1)求函數(shù)f(x)的解析式;
(2)求最大的整數(shù)m(m>1),使得存在實(shí)數(shù)t,對(duì)任意的x∈[1,m]都有f(x+t)<3ex.

查看答案和解析>>


同步練習(xí)冊(cè)答案