點(diǎn)與圓的位置關(guān)系:已知點(diǎn)及圓.(1)點(diǎn)M在圓C外,(2)點(diǎn)M在圓C內(nèi) ,(3)點(diǎn)M在圓C上 . 如點(diǎn)P2+y2=1的內(nèi)部,則a的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點(diǎn),∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率

∴直線的方程為:,又,

,即. -----------------7分

∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

,

當(dāng)且僅當(dāng),即,時(shí)取等號.

故圓面積的最小值

 

查看答案和解析>>

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)求證:直線l恒過定點(diǎn);
(2)試判斷直線l與圓C的位置關(guān)系;
(3)當(dāng)直線l與圓C相交時(shí),求直線l被圓C截得的弦何時(shí)最長,何時(shí)最短?并求截得的弦長最短時(shí)m的值以及最短長度.

查看答案和解析>>

已知直線l1:(2m+1)x+(m+1)y-7m-5=0(m∈R)和直線l1:x+3y-5=0,圓C:x2+y2-2x-4y=0.
(1)當(dāng)m為何值時(shí),l1∥l2?
(2)是否存在點(diǎn)P,使得不論m為何值,直線l1都經(jīng)過點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由;
(3)試判斷直線l1與圓C的位置關(guān)系.若相交,求截得的弦長最短時(shí)m的值以及最短長度;若相切,求切點(diǎn)的坐標(biāo);若相離,求圓心到直線l1的距離的最大值.

查看答案和解析>>

已知圓C:x2+y2-2x-4y-20=0,直線l:(2m+1)x+(m+1)y-7m-4=0,m∈R.
(I)直線l是否過定點(diǎn),有則求出來?判斷直線與圓的位置關(guān)系及理由?
(II)求直線被圓C截得的弦長L的取值范圍及L最短時(shí)弦所在直線的方程.

查看答案和解析>>

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,m∈R
(1)直線l是否過定點(diǎn),有則求出來?判斷直線與圓的位置關(guān)系及理由?
(2)求直線被圓C截得的弦長最小時(shí)l的方程.

查看答案和解析>>


同步練習(xí)冊答案