1.了解空間向量的基本概念,掌握空間向量的加.減.數(shù)乘.及數(shù)量積的運算,了解空間向量共面的概念及條件,理解空間向量基本定理. 查看更多

 

題目列表(包括答案和解析)

材料:采訪零向量

  W:你好!零向量.我是《數(shù)學(xué)天地》的一名記者,為了讓在校的高中生更好了解你,能不能對你進行一次采訪呢?

  零向量:當(dāng)然可以,我們向量王國隨時恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務(wù).

  W:好的,那就開始吧!你的名字有什么特殊的含義嗎?

  零向量:零向量就是長度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.

  W:你與其他向量有什么共同之處呢?

  零向量:既然我是向量王國的一個成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進行加、減法運算時滿足交換律和結(jié)合律,還定義了與實數(shù)的積.

  W:你有哪些值得驕傲的特殊榮耀呢?

  零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運算中,我與實數(shù)0很有相似之處.

  W:你有如此多的榮耀,那么是否還有煩惱之事呢?

  零向量:當(dāng)然有了,在向量王國還有許多“權(quán)利和義務(wù)”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對我進行了限制.所有這些確實給一些高中生帶來了很多苦惱,在此我向大家真誠地說一聲:對不起,這不是我的錯.但我還是很高興有這次機會與大家見面.

  W:OK!采訪就到這里吧,非常感謝你的合作,再見!

  零向量:Bye!

閱讀上面的材料回答下面問題.

應(yīng)用零向量時應(yīng)注意哪些問題?

查看答案和解析>>

{
a
,
b
c
}=是空間向量的一個基底,設(shè)
p
=
a
+
b
q
=
b
+
c
,
r
=
c
+
a
,給出下列向量組:①{
a
,
b
,
p
,②{
b
c
,
r
},③{
p
,
q
,
r
},④{
p
,
q
,
a
+
b
+
c
},其中可以作為空間向量基底的向量組有(  )組.
A、1B、2C、3D、4

查看答案和解析>>

[必做題]利用空間向量的方法解決下列問題:在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是BB1,DC的中點.
(1)求AE與D1F所成的角;
(2)證明AE⊥面A1D1F.

查看答案和解析>>

有以下命題:
①如果向量
a
,
b
與任何向量不能構(gòu)成空間向量的一組基底,那么
a
,
b
的關(guān)系是不共線;
②O,A,B,C為空間四點,且向量
OA
OB
,
OC
不構(gòu)成空間的一個基底,那么點O,A,B,C一定共面;
③已知向量
a
,
b
,
c
是空間的一個基底,則向量
a
+
b
,
a
-
b
,
c
,也是空間的一個基底.
其中正確的命題是( 。
A、①②B、①③C、②③D、①②③

查看答案和解析>>

已知{
a
b
,
c
}是空間向量的一個基底,則可以與向量
p
=
a
+
b
,
q
=
a
-
b
構(gòu)成基底的向量是(  )

查看答案和解析>>


同步練習(xí)冊答案