A.若與所成的角相等.則 查看更多

 

題目列表(包括答案和解析)

為兩條直線,為兩個平面,下列四個命題中,正確的命題是

A.若所成的角相等,則

B.若,,則

C.若,則

D.若,則

查看答案和解析>>

如圖,在平面直角坐標系中,是一個與x軸的正半軸、y軸的正半軸分別相切于點CD的定圓所圍成的區(qū)域(含邊界),A、BC、D是該圓的四等分點.若點、點滿足,則稱P優(yōu)于.如果中的點滿足:不存在中的其它點優(yōu)于Q,那么所有這樣的點Q組成的集合是劣弧

A.      B.                      C.              D.

查看答案和解析>>

為兩條直線,為兩個平面,下列四個命題中,正確的命題是( 。

A.若所成的角相等,則

B.若,,則

C.若,則

D.若,,則

 

查看答案和解析>>

對于平面和共面的直線,,下列命題中真命題是

A.若,則     B.若,,則

C.若,,則     D.若,所成的角相等,則

查看答案和解析>>

6.給出下列四個命題:

①垂直于同一直線的兩條直線互相平行

②垂直于同一平面的兩個平面互相平行

③若直線與同一平面所成的角相等,則互相平行

④若直線是異面直線,則與都相交的兩條直線是異面直線

其中假命題的個數(shù)是( 。

A.1            B.2            C.3            D.4

查看答案和解析>>

 

一、             選擇題(本大題共12小題,每小題5分,共60分)

CDAB   CDAB     ABBA

二、填空題:(本大題共4小題,每小題4分,共16分)

13、                   14、

15、                               16、

三、解答題:本大題共6小題,共74分,解答應寫出文字說明,證明過程或演算步驟。

17、解、由題,則

 

0

 

2

 

0

 

 

遞增

極大值

遞減

 

時,;當時,;當時,

所以,當時,;當時,

18、解、(1)設甲投球一次命中為事件A,;設乙投球一次命中為事件B,

則甲、乙兩人在罰球線各投球一次,恰好命中一次的概率

答:甲、乙兩人在罰球線各投球一次,恰好命中一次的概率為。

 

(2)甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的對立面是這四次投球中無一次命中,

所以甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的的概率是

答:甲、乙兩人在罰球線各投球二次,這四次投球中至少一次命中的的概率是。

19、解、(1)中,

(2)以分別為軸,如圖建立直角坐標系,設

所以與平面所成的角為。

20、解:(1)∵

依題意得   ∴                     

                        

(2)設第r +1項含x3項,

 

                       

∴第二項為含x3的項:T2=-2=-18x3

21、解、(1)設,若

,又,所以

,而,所以無解。即直線與直線不可能垂直。

(2)

所以的范圍是

22、(Ⅰ)解:當時,,得,且

,

所以,曲線在點處的切線方程是,整理得

.。

(Ⅱ)解:

,解得

由于,以下分兩種情況討論.

(1)若,當變化時,的正負如下表:

因此,函數(shù)處取得極小值,且

;

函數(shù)處取得極大值,且

(2)若,當變化時,的正負如下表:

因此,函數(shù)處取得極小值,且

;

函數(shù)處取得極大值,且

(Ⅲ)證明:由,得,當時,

,

由(Ⅱ)知,上是減函數(shù),要使

只要

       、

,則函數(shù)上的最大值為

要使①式恒成立,必須,即

所以,在區(qū)間上存在,使得對任意的恒成立.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案