題目列表(包括答案和解析)
已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列 前項(xiàng)和為,且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列前項(xiàng)和;
(3)在數(shù)列中,是否存在連續(xù)的三項(xiàng),按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由
已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列前項(xiàng)和為,且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列前項(xiàng)和;
(3)在數(shù)列中,是否存在連續(xù)的三項(xiàng),按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)數(shù)列{an},{bn}滿足如下關(guān)系:an+1=,bn=(n∈N*),且b1=,求數(shù)列{bn}的通項(xiàng)公式,并求數(shù)列{(3n-1)bn}(n∈N*)前n項(xiàng)的和Sn.
(文)已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(1)分別求數(shù)列{an},{bn}的通項(xiàng)公式an,bn;
(2)設(shè)Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.
一、選擇題:
1―5 DACBC 6―10 BDCAC 11―12 DA
二、填空題:
13.6或―1 14. 15.180 16.①③
三、解答題:
17.(本小題滿分10分)
解:
………………4分
(2)
………………10分
18.(本小題滿分12分)
解:(1)設(shè)中國隊(duì)以3:1贏得日本隊(duì)為事件A
則
答:中國隊(duì)以3:1贏得日本隊(duì)的概率為 ………………4分
(2)設(shè)中方贏下比賽為事件B
則
答:中方贏下比賽的 ………………12分
19.(本小題滿分12分)
解:(I)由題意
。 ………………6分
(2)
20.(14分)解法一:(1)取PC中點(diǎn)為G,連GF,則GF//CD,AE//CD且
GF=AE= ∴GF//AE,AEGF是平行四邊形
∴AF//EG,∵EG平面PEC,
AF//平面PEC. ………………3分
(2)∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD
∴AB⊥PD∴CD⊥PD
∵CD⊥AD ∴∠ADP為二面角P―CD―B的平面角,∴∠ADP=45°
∵PA⊥AD,∴PA⊥平面ABCD,
延長DA,CE交于一點(diǎn)H,連結(jié)PH,則AH=3,
∴PH⊥PD,又PH⊥CD,∴PH⊥平面PCD,
∴∠DPC為平面PEC和平面PAD所成的二面角的平面角, …………6分
(3)∵VD―PEC=VP―DEC,∴D到平面PEC的距離為 …………12分
解法二:∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD
∴AB⊥PD ∴CD⊥PD
∵CD⊥AD ∴∠ADP為二面角P―CD―B的平面角,∴∠ADP=45°
∵PA⊥AD,∴PA⊥平面ABCD ………………3分
(1)以AB為x軸,AD為y軸,AP為z軸建立空間直角坐標(biāo)系。
(2)由題意知,平面PAD的法向量
∴平面PEC與平面PAD所成銳二面角的大小為30° …………8分
(3)由……12分
21.(本小題滿分12分)
解:(1)
x
―2
(-2,-1)
―1
(-1,1)
―1
(1,2)
2
+
0
―
0
+
增
減
增
………………6分
(2)存在,
22.(本小題滿分12分)
解:(1)由
可求得⊙O′的方程為 ………………3分
∴AB為⊙O′的直徑,
直線BD的方程為 ………………6分
(2)設(shè),
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com