C.或 D.或 查看更多

 

題目列表(包括答案和解析)

.袋中裝有4個(gè)大小相同、標(biāo)號(hào)分別為1,2,3,4的小球,依次從袋中取出所有的球,則“標(biāo)號(hào)順序不符合從小到大或從大到小排列”的概率為

A、          B、            C、            D、

 

查看答案和解析>>

.已知全集U=R,集合M={x|x2-2x≤0},則CUM=


  1. A.
    {x|0≤x≤2}
  2. B.
    {x|-2≤x≤0)
  3. C.
    {x|x≤0,或x≥2}
  4. D.
    {x|x<0,或x>2)

查看答案和解析>>

集合C={f(x)|f(x)是在其定義域上的單調(diào)增函數(shù)或單調(diào)減函數(shù)},集合D={f(x)|f(x)在定義域內(nèi)存在區(qū)間[a,b],使得f(x)在a,b上的值域是[ka,kb],k為常數(shù)}.
(1)當(dāng)k=
1
2
時(shí),判斷函數(shù)f(x)=
x
是否屬于集合C∩D?并說(shuō)明理由.若是,則求出區(qū)間[a,b];
(2)當(dāng)k=
1
2
0時(shí),若函數(shù)f(x)=
x
+t∈C∩D,求實(shí)數(shù)t的取值范圍;
(3)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m∈D,若存在,求出m的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

集合C={f(x)|f(x)是在其定義域上的單調(diào)增函數(shù)或單調(diào)減函數(shù)},集合D={f(x)|f(x)在定義域內(nèi)存在區(qū)間[a,b],使得f(x)在a,b上的值域是[ka,kb],k為常數(shù)}.
(1)當(dāng)k=
1
2
時(shí),判斷函數(shù)f(x)=
x
是否屬于集合C∩D?并說(shuō)明理由.若是,則求出區(qū)間[a,b];
(2)當(dāng)k=
1
2
0時(shí),若函數(shù)f(x)=
x
+t∈C∩D,求實(shí)數(shù)t的取值范圍;
(3)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m∈D,若存在,求出m的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

集合C={f(x)|f(x)是在其定義域上的單調(diào)增函數(shù)或單調(diào)減函數(shù)},集合D={f(x)|f(x)在定義域內(nèi)存在區(qū)間[a,b],使得f(x)在a,b上的值域是[ka,kb],k為常數(shù)}.
(1)當(dāng)k=時(shí),判斷函數(shù)f(x)=是否屬于集合C∩D?并說(shuō)明理由.若是,則求出區(qū)間[a,b];
(2)當(dāng)k=0時(shí),若函數(shù)f(x)=+t∈C∩D,求實(shí)數(shù)t的取值范圍;
(3)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m∈D,若存在,求出m的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空題:每小題5分,滿分20.

13.

14. 

15.

16.①③④

三、解答題

17.設(shè)兩個(gè)實(shí)數(shù)為a,b,,,建立平面直角坐標(biāo)系aOb, 則點(diǎn)在正方形OABC內(nèi)       ……… 2分

(Ⅰ) 記事件A“兩數(shù)之和小于1.2”,即,則滿足條件的點(diǎn)在多邊形OAEFC內(nèi)

所以                                    ……… 6分

(Ⅱ) 記事件B“兩數(shù)的平方和小于0.25”,則滿足條件的點(diǎn)在扇形內(nèi)

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范圍是         ………12分

19.(Ⅰ)連接,交,易知中點(diǎn),故在△中,為邊的中位線,故,平面,平面,所以∥平面            ……… 5分

(Ⅱ)在平面內(nèi)過(guò)點(diǎn),垂足為H,

∵平面⊥平面,且平面∩平面,

⊥平面,∴,                                 ……… 8分

又∵,中點(diǎn),∴

⊥平面,∴,又∵,

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各項(xiàng)均為正數(shù)的等差數(shù)列,且公差

 ∴           ……… 3分

為常數(shù),∴是等差數(shù)列           ……… 5分

(Ⅱ)∵,∴

是公差為1的等差數(shù)列                                       ……… 7分

,∴       ……… 9分

當(dāng)時(shí),                                   ………10分

當(dāng)時(shí),

綜上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由橢圓的對(duì)稱性知:PRQS為菱形,原點(diǎn)O到各邊距離相等……… 5分

⑴當(dāng)P在y軸上時(shí),易知R在x軸上,此時(shí)PR方程為

.                                                       ……… 6分

⑵當(dāng)P在x軸上時(shí),易知R在y軸上,此時(shí)PR方程為,

.                                                       ……… 7分

⑶當(dāng)P不在坐標(biāo)軸上時(shí),設(shè)PQ斜率為k,、

P在橢圓上,.......①;R在橢圓上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再將①②帶入,得

綜上當(dāng)時(shí),有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 變化情況如下表:

x

 

 

b

                                                                                            ……… 2分

∵函數(shù)上的最大值為1,

,此時(shí)應(yīng)有

,                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切線方程為                                             ……… 8分

(Ⅲ)                                   ………10分

設(shè)

     

∴當(dāng)時(shí),函數(shù)的無(wú)極值點(diǎn)

當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn)                 ………12分

 

 


同步練習(xí)冊(cè)答案