C. D.條件不足.無法確定 查看更多

 

題目列表(包括答案和解析)

小明在《高中全程復(fù)習(xí)優(yōu)化訓(xùn)練》中遇到這樣一道習(xí)題,無法確定答案,請(qǐng)你幫他解決.題目為:下列結(jié)論中正確的個(gè)數(shù)是

①方程(x-1)3(x+5)(x+1)=0的解集為{1,1,1,-5,-1};②實(shí)數(shù)集{1,a,a2-a}中元素a所滿足的條件為a≠0且a≠1且a≠2;③集合A={a,b,c}中的三個(gè)元素可構(gòu)成△ABC三邊長(zhǎng),則△ABC一定不是等腰三角形;④方程組的解集為{(3,1,4)};⑤集合N中的最小元素為1;⑥方程(x-1)3(x+2)(x-5)=0的解集含有3個(gè)元素;⑦0∈;⑧滿足1+x>x的實(shí)數(shù)的全體形成集合.

[  ]

A.3

B.4

C.5

D.6

查看答案和解析>>

已知是定義在上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:

的值域?yàn)镸,且MÍ

②對(duì)任意不相等的,, 都有||<||.

那么,關(guān)于的方程=在區(qū)間上根的情況是          (     )

A.沒有實(shí)數(shù)根                         B.有且僅有一個(gè)實(shí)數(shù)根

C.恰有兩個(gè)不等的實(shí)數(shù)根               D.實(shí)數(shù)根的個(gè)數(shù)無法確定

 

查看答案和解析>>

已知是定義在上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:

       ①的值域?yàn)镸,且MÍ;

       ②對(duì)任意不相等的,, 都有||<||.

       那么,關(guān)于的方程=在區(qū)間上根的情況是                                    (    )

       A.沒有實(shí)數(shù)根                            B.有且僅有一個(gè)實(shí)數(shù)根

       C.恰有兩個(gè)不等的實(shí)數(shù)根                  D.實(shí)數(shù)根的個(gè)數(shù)無法確定

查看答案和解析>>

已知是定義在上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:
的值域?yàn)镸,且MÍ;
②對(duì)任意不相等的, 都有||<||.
那么,關(guān)于的方程=在區(qū)間上根的情況是         (    )

A.沒有實(shí)數(shù)根 B.有且僅有一個(gè)實(shí)數(shù)根
C.恰有兩個(gè)不等的實(shí)數(shù)根 D.實(shí)數(shù)根的個(gè)數(shù)無法確定

查看答案和解析>>

已知f(x)是定義在[a,b]上的函數(shù),其圖象是一條連續(xù)的曲線,且滿足下列條件:

①f(x)的值域?yàn)镸,且M[a,b];

②對(duì)任意不相等的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.

那么,關(guān)于x的方程f(x)=x在區(qū)間[a,b]上根的情況是

[  ]
A.

沒有實(shí)數(shù)根

B.

有且僅有一個(gè)實(shí)數(shù)根

C.

恰有兩個(gè)不等的實(shí)數(shù)根

D.

實(shí)數(shù)根的個(gè)數(shù)無法確定

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空題:每小題5分,滿分20.

13.

14. 

15.

16.①③④

三、解答題

17.設(shè)兩個(gè)實(shí)數(shù)為a,b,,建立平面直角坐標(biāo)系aOb, 則點(diǎn)在正方形OABC內(nèi)       ……… 2分

(Ⅰ) 記事件A“兩數(shù)之和小于1.2”,即,則滿足條件的點(diǎn)在多邊形OAEFC內(nèi)

所以                                    ……… 6分

(Ⅱ) 記事件B“兩數(shù)的平方和小于0.25”,則滿足條件的點(diǎn)在扇形內(nèi)

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范圍是         ………12分

19.(Ⅰ)連接,交,易知、中點(diǎn),故在△中,為邊的中位線,故,平面,平面,所以∥平面            ……… 5分

(Ⅱ)在平面內(nèi)過點(diǎn),垂足為H,

∵平面⊥平面,且平面∩平面,

⊥平面,∴,                                 ……… 8分

又∵,中點(diǎn),∴

⊥平面,∴,又∵

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各項(xiàng)均為正數(shù)的等差數(shù)列,且公差

 ∴           ……… 3分

為常數(shù),∴是等差數(shù)列           ……… 5分

(Ⅱ)∵,∴

是公差為1的等差數(shù)列                                       ……… 7分

,∴       ……… 9分

當(dāng)時(shí),                                   ………10分

當(dāng)時(shí),

綜上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由橢圓的對(duì)稱性知:PRQS為菱形,原點(diǎn)O到各邊距離相等……… 5分

⑴當(dāng)P在y軸上時(shí),易知R在x軸上,此時(shí)PR方程為

.                                                       ……… 6分

⑵當(dāng)P在x軸上時(shí),易知R在y軸上,此時(shí)PR方程為,

.                                                       ……… 7分

⑶當(dāng)P不在坐標(biāo)軸上時(shí),設(shè)PQ斜率為k,

P在橢圓上,.......①;R在橢圓上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再將①②帶入,得

綜上當(dāng)時(shí),有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 變化情況如下表:

x

 

 

b

                                                                                            ……… 2分

∵函數(shù)上的最大值為1,

,此時(shí)應(yīng)有

,                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切線方程為                                             ……… 8分

(Ⅲ)                                   ………10分

設(shè)

     

∴當(dāng)時(shí),函數(shù)的無極值點(diǎn)

當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn)                 ………12分

 

 


同步練習(xí)冊(cè)答案