[解]:(Ⅰ)易得. ----1分 查看更多

 

題目列表(包括答案和解析)

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.

(Ⅰ)求證:點(diǎn)為棱的中點(diǎn);

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,

易知,。由此知:從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。

(1)過點(diǎn)點(diǎn),取的中點(diǎn),連。且相交于,面內(nèi)的直線,!3分

且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實(shí)數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

第二問中,,則設(shè),

,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立, 

第三問中問題等價于證明,

由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                 …………4分

(2),則設(shè)

,單調(diào)遞增,,單調(diào)遞減,,因?yàn)閷σ磺?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131571401959588_ST.files/image005.png">,恒成立,                                             …………9分

(3)問題等價于證明,,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

如圖1,在中,,D,E分別為AC,AB的中點(diǎn),點(diǎn)F為線段CD上的一點(diǎn),將沿DE折起到的位置,使,如圖2.

(Ⅰ)求證:DE∥平面

(Ⅱ)求證:

(Ⅲ)線段上是否存在點(diǎn)Q,使?說明理由。

【解析】(1)∵DE∥BC,由線面平行的判定定理得出

(2)可以先證,得出,∵

(3)Q為的中點(diǎn),由上問,易知,取中點(diǎn)P,連接DP和QP,不難證出,,又∵

 

查看答案和解析>>

設(shè)橢圓(常數(shù))的左右焦點(diǎn)分別為,是直線上的兩個動點(diǎn),

(1)若,求的值;

(2)求的最小值.

【解析】第一問中解:設(shè),

    由,得

  ② 

第二問易求橢圓的標(biāo)準(zhǔn)方程為:

,

所以,當(dāng)且僅當(dāng)時,取最小值

解:設(shè) ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求橢圓的標(biāo)準(zhǔn)方程為:.………………2分

, ……4分

所以,當(dāng)且僅當(dāng)時,取最小值.…2分

解法二:, ………………4分

所以,當(dāng)且僅當(dāng)時,取最小值

 

查看答案和解析>>

已知函數(shù),其中.

  (1)若處取得極值,求曲線在點(diǎn)處的切線方程;

  (2)討論函數(shù)的單調(diào)性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點(diǎn)

處的切線方程為:

第二問中,易得的分母大于零,

①當(dāng)時, ,函數(shù)上單調(diào)遞增;

②當(dāng)時,由可得,由解得

第三問,當(dāng)時由(2)可知,上處取得最小值,

當(dāng)時由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時,求的取值范圍是

 

查看答案和解析>>


同步練習(xí)冊答案