(1)求, 查看更多

 

題目列表(包括答案和解析)

1、求定義域時(shí),應(yīng)注意以下幾種情況.
(1)如果f(x)是整式,那么函數(shù)的定義域是
R
;
(2)如果f(x)是分式,那么函數(shù)的定義域是使
分母不等于零
的實(shí)數(shù)的集合;
(3)如果f(x)為二次根式,那么函數(shù)的定義域是使
被開(kāi)方數(shù)不小于零
的實(shí)數(shù)的集合;
(4)如果f(x)為某一數(shù)的零次冪,那么函數(shù)的定義域是使
底數(shù)不為零
的實(shí)數(shù)的集合.

查看答案和解析>>

求下列各題的最值.
(1)已知x>0,y>0,lgx+lgy=1,,求z=
2
x
+
5
y
的最小值;
(2)x>0,求f(x)=
12
x
+3x的最小值
;
(3)x<3,求f(x)=
4
x-3
+x的最大值

(4)x∈R,求f(x)=sin2x+1+
5
sin2x+1
的最小值

查看答案和解析>>

求下列函數(shù)的導(dǎo)數(shù):
(1)y=(1-
x
)(1+
1
x
);
(2)y=
lnx
x

(3)y=tanx;
(4)y=xe1-cosx

查看答案和解析>>

2、求(-1+i)20展開(kāi)式中第15項(xiàng)的數(shù)值;

查看答案和解析>>

求值:(1)
2cos10°-sin20°
sin70°
;
(2)tan(
π
6
-θ)+tan(
π
6
+θ)+
3
tan(
π
6
-θ)tan(
π
6
+θ).

查看答案和解析>>

一.選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

B

D

D

B

D

A

C

C

A

A

二.填空題(每小題4分,共16分)

13.     14.    15.     16.  -  

三、解答題:(本大題共6個(gè)小題,共74分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟).

17、(本小題滿分12分)

解:由得:

(3分)

因?yàn)?sub>所以   所以  (6分)

由正弦定理得.      (8分)  從而由余弦定理及得:

    (12分)

18、(本小題滿分12分)

解:(1)∵這支籃球隊(duì)與其他各隊(duì)比賽勝場(chǎng)的事件是相互獨(dú)立的,

∴首次勝場(chǎng)前已負(fù)了兩場(chǎng)的概率P=(1-)×(1-=.   4分

(2)設(shè)A表示這支籃球隊(duì)在6場(chǎng)比賽中恰好勝了3場(chǎng)的事件,則P(A)就是6次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生3次的概率.∴P(A)=P6(3)=C()3(1-)3=.     8分

(3)設(shè)ξ表示這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù),則ξB(6,).

=6××(1-)=,Eξ=6×=2.

故這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù)的期望是2,方差是.     12分

19、(本小題滿分12分)

解: (4分)

,

  ( 6分)

當(dāng)時(shí),當(dāng)時(shí),,(9分)

當(dāng)時(shí),

當(dāng)時(shí), (11分)

綜上,

文本框: 圖2

所以,為等差數(shù)列.(12分)

20.(本題?分12分)

解 (1)如圖2,將已知條件實(shí)現(xiàn)在長(zhǎng)方體中,則直線與平面所成的角為,ks5u直線與平面所成角的為.在直角中,有,故=;在直角中,有

=.               6分

(2)如圖2,作

               

設(shè)二面角的平面角為,則             

得:.                   12分

21、(本小題滿分12分)

解:因?yàn)榫段的兩端點(diǎn)在拋物線上,故可設(shè),設(shè)線段的中點(diǎn),則            7分

所以:                              11分

所以,線段的中點(diǎn)的軌跡方程為.    12分

22、(本小題滿分14分)

(1)解:f′(x)=3x2-6ax+b,

過(guò)P1(x1,y1)的切線方程是y-y1=f′(x1)(x-x1)(x1≠0).

又原點(diǎn)在直線上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),

解得x1=.       4分

(2)解:過(guò)Pn(xn,yn)的切線方程是y-yn=f′(xn)(x-xn).

又Pn+1 (xn+1,yn+1)在直線上,

所以(xn+1-xn)2(xn+1+2xn3a)=0.由xn≠xn+1,

解得xn+1+2xn3a=0.        10分

(3)證明:由(2)得xn+1-a=-2(xn-a),

所以數(shù)列{xn-a}是首項(xiàng)為x1-a=,公比為-2的等比數(shù)列.

∴xn=a+?(-2)n-1,

即xn=[1-(-2)n-2]a.

當(dāng)n為正偶數(shù)時(shí),xn<a;當(dāng)n為正奇數(shù)時(shí), xn>a.     14分

 

 

 

 


同步練習(xí)冊(cè)答案