題目列表(包括答案和解析)
已知函數(shù)的圖像與函數(shù)
的圖像關(guān)于點
對稱
(1)求函數(shù)的解析式;
(2)若,
在區(qū)間
上的值不小于6,求實數(shù)a的取值范圍.
已知函數(shù)的圖像與函數(shù)
的圖像關(guān)于直線
對稱,那么下列情形不可能出現(xiàn)的是( )
(A)函數(shù)有最小值
(B)函數(shù)
過點(4,2)
(C)函數(shù)是偶函數(shù)
(D)函數(shù)
在其定義域上是增函數(shù)
已知函數(shù)的圖像與函數(shù)
的圖像關(guān)于點
對稱
(Ⅰ)求的解析式;
(Ⅱ)若,且
在區(qū)間
上為減函數(shù),求實數(shù)
的取值范圍.
已知函數(shù)的圖像與函數(shù)
的圖像關(guān)于直線
對稱,記
.若
在區(qū)間
上是增函數(shù),則實數(shù)
的取值范圍是
A. B.
�。茫�
D.
已知函數(shù)的圖像與函數(shù)
的圖像關(guān)于直線
對稱,則
A. B.
C. D.
一.選擇題(每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
D
D
B
D
A
C
C
A
A
二.填空題(每小題4分,共16分)
13. 14.
15.
16.
-
三、解答題:(本大題共6個小題,共74分.解答應(yīng)寫出文字說明,證明過程或演算步驟).
17、(本小題滿分12分)
解:由得:
(3分)
因為所以
所以
(6分)
由正弦定理得. (8分) 從而由余弦定理及
得:
(12分)
18、(本小題滿分12分)
解:(1)∵這支籃球隊與其他各隊比賽勝場的事件是相互獨立的,
∴首次勝場前已負了兩場的概率P=(1-)×(1-
)×
=
. 4分
(2)設(shè)A表示這支籃球隊在6場比賽中恰好勝了3場的事件,則P(A)就是6次獨立重復(fù)試驗中恰好發(fā)生3次的概率.∴P(A)=P6(3)=C(
)3(1-
)3=
.
8分
(3)設(shè)ξ表示這支籃球隊在6場比賽中勝場數(shù),則ξ~B(6,).
∴Dξ=6××(1-
)=
,Eξ=6×
=2.
故這支籃球隊在6場比賽中勝場數(shù)的期望是2,方差是.
12分
19、(本小題滿分12分)
解: (4分)
,
( 6分)
當時,
當
時,
,(9分)
當
時,
當時,
(11分)
綜上,
所以,
為等差數(shù)列.(12分)
20.(本題?分12分)
解 (1)如圖2,將已知條件實現(xiàn)在長方體中,則直線與平面
所成的角為
,ks5u直線
與平面
所成角的為
.在直角
中,有
,故
=
;在直角
中,有
,
故=
. 6分
(2)如圖2,作有
設(shè)二面角的平面角為
,則
得:.
12分
21、(本小題滿分12分)
解:因為線段的兩端點在拋物線
上,故可設(shè)
,設(shè)線段
的中點
,則
7分
又,
所以:
11分
所以,線段的中點
的軌跡方程為
. 12分
22、(本小題滿分14分)
(1)解:f′(x)=3x2-6ax+b,
過P1(x1,y1)的切線方程是y-y1=f′(x1)(x-x1)(x1≠0).
又原點在直線上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),
解得x1=. 4分
(2)解:過Pn(xn,yn)的切線方程是y-yn=f′(xn)(x-xn).
又Pn+1 (xn+1,yn+1)在直線上,
所以(xn+1-xn)2(xn+1+2xn-
解得xn+1+2xn-
(3)證明:由(2)得xn+1-a=-2(xn-a),
所以數(shù)列{xn-a}是首項為x1-a=,公比為-2的等比數(shù)列.
∴xn=a+?(-2)n-1,
即xn=[1-(-2)n-2]a.
當n為正偶數(shù)時,xn<a;當n為正奇數(shù)時, xn>a. 14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com