11.證明∠EAD=∠EDA.∠EBD=∠EDB分別得到AE=DE.BE=DE 查看更多

 

題目列表(包括答案和解析)

如圖,在Rt△ABC中,AC=2AB,∠BAC=90°,D是AC的中點(diǎn),在Rt△DEA中,∠AED=90°,∠EAD=45°,連結(jié)BE、CE,試猜想BE和EC的關(guān)系,并證明你的猜想.
(1)猜想:
數(shù)量關(guān)系為:BE=EC,位置關(guān)系是:BE⊥EC
數(shù)量關(guān)系為:BE=EC,位置關(guān)系是:BE⊥EC

(2)證明:
∵△AED是直角三角形,∠AED=90°,且有一個銳角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=45°+90°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中點(diǎn),
∴AD=CD=
1
2
AC,
∵AC=2AB,
∴AB=AD=DC,
∵在△EAB和△EDC中,
AE=DE
∠EAB=∠EDC
AB=DC
,
∴△EAB≌△EDC(SAS),
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC
∵△AED是直角三角形,∠AED=90°,且有一個銳角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=45°+90°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中點(diǎn),
∴AD=CD=
1
2
AC,
∵AC=2AB,
∴AB=AD=DC,
∵在△EAB和△EDC中,
AE=DE
∠EAB=∠EDC
AB=DC

∴△EAB≌△EDC(SAS),
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC

查看答案和解析>>

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長.

查看答案和解析>>

22、如圖,AD平分∠BAC,∠EAD=∠EDA.
(1)∠EAC與∠B相等嗎?為什么?
(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度數(shù).

查看答案和解析>>

如圖,五邊形ABCDE的內(nèi)角都相等,且∠BAC=∠BCA,∠EAD=∠EDA.求∠CAD度數(shù).精英家教網(wǎng)

查看答案和解析>>

如圖,在△ABC中,AD是∠BAC平分線,AD的垂直平分線分別交AB、BC延長線于F、E.求證:
(1)∠EAD=∠EDA;
(2)DF∥AC;
(3)∠EAC=∠B.

查看答案和解析>>


同步練習(xí)冊答案