題目列表(包括答案和解析)
已知是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在
,有
?請(qǐng)說(shuō)明理由;
(Ⅱ)若(a、q為常數(shù),且aq
0)對(duì)任意m存在k,有
,試求a、q滿(mǎn)足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列
中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請(qǐng)證明.
【解析】第一問(wèn)中,由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)時(shí),則
即
,其中
是大于等于
的整數(shù)
反之當(dāng)時(shí),其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿(mǎn)足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),
式不成立。由
式得
,整理
當(dāng)時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)時(shí),則
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時(shí),其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿(mǎn)足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)當(dāng)
為偶數(shù)時(shí),
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時(shí),
式不成立。由
式得
,整理
當(dāng)時(shí),符合題意。當(dāng)
,
為奇數(shù)時(shí),
由
,得
當(dāng)
為奇數(shù)時(shí),此時(shí),一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時(shí),命題都成立
△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長(zhǎng)及△ABC的面積。
【解析】本試題主要考查了余弦定理的運(yùn)用。利用由題意得,
,
并且
有
得到結(jié)論。
解:(Ⅰ)由題意得,
………1分
…………1分
(Ⅱ)………………1分
設(shè)函數(shù)f(x)=在[1,+∞
上為增函數(shù).
(1)求正實(shí)數(shù)a的取值范圍;
(2)比較的大小,說(shuō)明理由;
(3)求證:(n∈N*, n≥2)
【解析】第一問(wèn)中,利用
解:(1)由已知:,依題意得:
≥0對(duì)x∈[1,+∞
恒成立
∴ax-1≥0對(duì)x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),
∴n≥2時(shí):f()=
(3) ∵ ∴
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)
相切.
(I)求橢圓的方程;
(II)若過(guò)點(diǎn)(2,0)的直線(xiàn)與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿(mǎn)足
(O為坐標(biāo)原點(diǎn)),當(dāng)
<
時(shí),求實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。
第一問(wèn)中,利用
第二問(wèn)中,利用直線(xiàn)與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
已知函數(shù)f(x)=sin(ωx+φ)
(0<φ<π,ω>0)過(guò)點(diǎn)
,函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.
【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運(yùn)用,第一問(wèn)中利用函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為.得
,
所以
第二問(wèn)中,,
可以得到單調(diào)區(qū)間。
解:(Ⅰ)由題意得,
,…………………1分
代入點(diǎn)
,得
…………1分
,
∴
(Ⅱ),
的單調(diào)遞減區(qū)間為
,
.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com