題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
題 號
1
2
3
4
5
6
7
8
9
10
答 案
11. ; 12. ; 13.或或; 14.; 15..
三、解答題(本大題共6小題,共75分)
16.(本小題滿分12分)
已知向量,(,).函數(shù),
的圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為,且過點.
(Ⅰ)求函數(shù)的表達式;
(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間。
【解】(Ⅰ)
…………3′
由題意得周期,故.…………4′
又圖象過點,∴
即,而,∴,∴………6′
(Ⅱ)當時,
∴當時,即時,是減函數(shù)
當時,即時,是增函數(shù)
∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是…………12′
17.(本小題滿分12分)
在某社區(qū)舉辦的《2008奧運知識有獎問答比賽》中,甲、乙、丙三人同時回答一道有關(guān)奧運知識的問題,已知甲回答這道題對的概率是,甲、丙兩人都回答錯的概率是,乙、丙兩人都回答對的概率是.
(Ⅰ)求乙、丙兩人各自回答這道題對的概率;
(Ⅱ)用表示回答該題對的人數(shù),求的分布列和數(shù)學期望.
【解】(Ⅰ)記“甲回答對這道題”、“ 乙回答對這道題”、“丙回答對這道題”分別為事件、、,則,且有,即
∴,.…………6′
(Ⅱ)由(Ⅰ),.
的可能取值為:、、、.
則;
;
;
.…………9′
∴的分布列為
的數(shù)學期望.…………12′
18.(本小題滿分12分)如圖,已知正三棱柱各棱長都為,為棱上的動點。
(Ⅰ)試確定的值,使得;(Ⅱ)若,求二面角的大。
(Ⅲ)在(Ⅱ)的條件下,求點到面的距離。
【法一】(Ⅰ)當時,作在上的射影. 連結(jié).
則平面,∴,∴是的中點,又,∴也是的中點,
即. 反之當時,取的中點,連接、.
∵為正三角形,∴. 由于為的中點時,
∵平面,∴平面,∴.……4′
(Ⅱ)當時,作在上的射影. 則底面.
作在上的射影,連結(jié),則.
∴為二面角的平面角。
又∵,∴,∴.
∴,又∵,∴.
∴,∴的大小為.…8′
(Ⅲ)設(shè)到面的距離為,則,∵,∴平面,
∴即為點到平面的距離,
又,∴.
即,解得.即到面的距離為.……12′
【法二】以為原點,為軸,過點與垂直的直線為軸,
為軸,建立空間直角坐標系,如圖所示,
設(shè),則、、.
(Ⅰ)由得,
即,∴,即為的中點,
也即時,.…………4′
(Ⅱ)當時,點的坐標是. 取.
則,.
∴是平面的一個法向量。
又平面的一個法向量為.
∴,∴二面角的大小是.……8′
(Ⅲ)設(shè)到面的距離為,則,∴到面的距離為.…12′
19.(本小題滿分12分)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)若對滿足的任意實數(shù)恒成立,求實數(shù)的取值范圍(這里是自然對數(shù)的底數(shù));
(Ⅲ)求證:對任意正數(shù)、、、,恒有
.
【解】(Ⅰ)
∴的增區(qū)間為,減區(qū)間為和.
極大值為,極小值為.…………4′
(Ⅱ)原不等式可化為由(Ⅰ)知,時,的最大值為.
∴的最大值為,由恒成立的意義知道,從而…8′
(Ⅲ)設(shè)
則.
∴當時,,故在上是減函數(shù),
又當、、、是正實數(shù)時,
∴.
由的單調(diào)性有:,
即.…………12′
20.(本小題滿分13分)
如圖,已知曲線與拋物線的交點分別為、,曲線和拋物線在點處的切線分別為、,且、的斜率分別為、.
(Ⅰ)當為定值時,求證為定值(與無關(guān)),并求出這個定值;
(Ⅱ)若直線與軸的交點為,當取得最小值時,求曲線和的方程。
【解】(Ⅰ)設(shè)點的坐標為,
由得:
則,∴…………2′
由得,∴ …………4′
∴
又∵,,∴.
∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com