查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問(wèn)題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問(wèn)題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列、的通項(xiàng)公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.

(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);

(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長(zhǎng)為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

 

說(shuō)明:

       一、本解答指出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則.

       二、對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過(guò)該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

       三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

       四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿分50分.

1. A        2. C        3. C        4.C         5.D         6.D         7. B        8. D        9. B        10. C

二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿分20分.

11.  12.38            12.  5           13.  3        14.     15. ②③

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

16. 本小題主要考查正弦定理、三角函數(shù)的倍角公式、兩角和公式等基本知識(shí),考

查學(xué)生的運(yùn)算求解能力. 滿分13分.

解:(Ⅰ)由,知                 ………………………(2分)

,得,

          ,                   ………(5分)

                                   ………(6分)

(Ⅱ) 由(Ⅰ)知

          

                   ………………(9分)

         ,

         當(dāng),即時(shí),取得最大值為.   ……(13分)                               

17. 本題主要考查線線、線面、面面位置關(guān)系,線面角等基本知識(shí),考查空間想像能力,運(yùn)算求解能力和推理論證能力. 滿分13分.

解:(Ⅰ)證明:如圖,取中點(diǎn),連結(jié),;

,,

,

,…………(3分)

四邊形為平行四邊形,

,

平面,平面

∥平面.                        ………………………(6分)

(Ⅱ)依題意知平面平面,

平面,得  

.

如圖,以為原點(diǎn),建立空間直角坐標(biāo)系-xyz,

,可得、,

.

設(shè)平面的一個(gè)法向量為,

   得

解得,.            ………………(9分)

設(shè)線段上存在一點(diǎn),其中,則,

依題意:,即,

可得,解得(舍去).  

 所以上存在一點(diǎn).   …………(13分)

18.本題主要考查函數(shù)與導(dǎo)數(shù)等基本知識(shí),考查運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題與解決問(wèn)題的能力,

考查應(yīng)用意識(shí). 滿分13分.

  解:(Ⅰ)依題意,銷售價(jià)提高后為6000(1+)元/臺(tái),月銷售量為臺(tái)…(2分)

               ……………………(4分)

.       ……………………(6分)

(Ⅱ),得

解得舍去).                      ……………………(9分)

當(dāng) 當(dāng)當(dāng)時(shí),取得最大值.

此時(shí)銷售價(jià)為元.

答:筆記本電腦的銷售價(jià)為9000元時(shí),電腦企業(yè)的月利潤(rùn)最大.…………………(13分)

19.本題主要考查直線與橢圓的位置關(guān)系、不等式的解法等基本知識(shí),考查運(yùn)算求解能力和分析問(wèn)題、解決問(wèn)題的能力. 滿分13分

解:(Ⅰ)因?yàn)闄E圓的一個(gè)焦點(diǎn)是(1,0),所以半焦距=1.

因?yàn)闄E圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.

所以,解得

所以橢圓的標(biāo)準(zhǔn)方程為.  …(4分)                

(Ⅱ)(i)設(shè)直線聯(lián)立并消去得:.

,

,

.  ……………(5分)

A關(guān)于軸的對(duì)稱點(diǎn)為,得,根據(jù)題設(shè)條件設(shè)定點(diǎn)為,0),

,即.所以

即定點(diǎn)(1 , 0).                ……(8分)

(ii)由(i)中判別式,解得.     可知直線過(guò)定點(diǎn) (1,0).

所以          ……………(10分)

,  令

,得,當(dāng)時(shí),.

上為增函數(shù). 所以 ,

.故△OA1B的面積取值范圍是.           …(13分)

20. 本題主要考查函數(shù)的單調(diào)性、等差數(shù)列、不等式等基本知識(shí),考查運(yùn)用合理的推理證明解決問(wèn)題的方法,考查分類與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿分14分.

解:(Ⅰ)因?yàn)?sub>,

所以.           ………………(1分)

(i)當(dāng)時(shí),.

(ii)當(dāng)時(shí),由,得到,知在.

(iii)當(dāng)時(shí),由,得到,知在.

綜上,當(dāng)時(shí),遞增區(qū)間為;當(dāng)時(shí), 遞增區(qū)間為.                   …………(4分)

(Ⅱ)(i)因?yàn)?sub>,所以,即,

,即.     ……………………………………(6分)

因?yàn)?sub>,

當(dāng)時(shí),,

當(dāng)時(shí),,

所以.                  …………………………(8分)

又因?yàn)?sub>,

所以令,則

得到矛盾,所以不在數(shù)列中.    ………(9分)

(ii)充分性:若存在整數(shù),使.

設(shè)為數(shù)列中不同的兩項(xiàng),則.

,所以.

是數(shù)列的第項(xiàng).           ……………………(10分)

必要性:若數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng),

,,(為互不相同的正整數(shù))

,令

得到 ,

所以,令整數(shù),所以. ……(11 分)

下證整數(shù).若設(shè)整數(shù).令,

由題設(shè)取使

,所以

相矛盾,所以.

綜上, 數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)的充要條件是存在整數(shù),使.                          ……………………(14分)

21. (1)本題主要考查矩陣乘法、逆矩陣與變換等基本知識(shí),考查運(yùn)算求解能力, 滿分7分.

解: ,即 ,

所以  得              …………(4分)

     即M=    .

=1 ,  .          …………(7分)

(2)本題主要考查圓極坐標(biāo)方程和直線參數(shù)方程等基本知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想. 滿分7分.

解:曲線的極坐標(biāo)方程可化為,

其直角坐標(biāo)方程為,即.      ………(2分)

直線的方程為.

所以,圓心到直線的距離          ………(5分)

所以,的最小值為.                 …………(7分)

(3)本題主要考查柯西不等式與不等式解法等基本知識(shí),考查化歸與轉(zhuǎn)化思想. 滿分7分.

解:由柯西不等式:

. …………(3分)

因?yàn)?sub>

所以,即

因?yàn)?sub>的最大值是7,所以,得,

當(dāng)時(shí),取最大值,

所以.                         ……………………(7分)

 

 


同步練習(xí)冊(cè)答案