令3-r=2,得r=1 , 因此.展開式中含項(xiàng)的系數(shù)是-192. 查看更多

 

題目列表(包括答案和解析)

觀察下列問題:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013,
請(qǐng)仿照這種“賦值法”,求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
-1
-1

查看答案和解析>>

觀察下列問題:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013
請(qǐng)仿照這種“賦值法”,求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=______.

查看答案和解析>>

某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),乙班為實(shí)驗(yàn)班,甲班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,成績(jī)?nèi)缦卤恚ǹ偡郑?50分):
甲班
成績(jī) 2a=6,
c
a
=
6
3
a=3,c=
6
x2
9
+
y2
3
=1
x2
9
+
y2
3
=1
y=kx-2
得,(1+3k2)x2-12kx+3=0
△=144k2-12(1+3k2)>0,
頻數(shù) 4 20 15 10 1
乙班
成績(jī) k2
1
9
A(x1,y1),B(x2,y2 x1+x2=
12k
1+3k2
,x1x2=
3
1+3k2
y1+y2=k(x1+x2)-4=k•
12k
1+3k2-4
=-
4
1+3k2
E(
6k
1+3k2
,-
2
1+3k2
)
頻數(shù) 1 11 23 13 2
(1)現(xiàn)從甲班成績(jī)位于90到100內(nèi)的試卷中抽取9份進(jìn)行試卷分析,請(qǐng)問用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果;
(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是101.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分;
(3)完成下面2×2列聯(lián)表,你認(rèn)為在犯錯(cuò)誤的概率不超過0.025的前提下,“這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說明理由.
成績(jī)小于100分 成績(jī)不小于100分 合計(jì)
甲班
-
2
1+3k2
-1
6k
1+3k2
•k=-1
26 50
乙班 12 k=±1 50
合計(jì) 36 64 100
附:
x-y-2=0或x+y+2=0. 0.15 0.10 0.05 0.025 0.010 0.005 0.001
a=
1
2
2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

觀察下列問題:
已知(1-2x)2013=a+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a=1,
令x=1,可得a+a1+a2+a3+…+a2013=2013=-1,
令x=-1,可得a-a1+a2+a3+…-a2013=2013=32013
請(qǐng)仿照這種“賦值法”,求出 =   

查看答案和解析>>

14、(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式兩邊對(duì)x求導(dǎo)后令x=1,可得結(jié)論:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解題思路,可得到許多結(jié)論.試問:Cn0+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn=
(n+2)2n-1

查看答案和解析>>


同步練習(xí)冊(cè)答案