(1)求曲線E的方程, 的弦的中點的軌跡方程. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線
x22
-y2=1
的左、右頂點分別為A1,A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點.
(1)求直線A1P與A2Q交點的軌跡E的方程;
(2)若過點H(0,h)(h>1)的兩條直線l1和l2與軌跡E都只有一個交點,且l1⊥l2,求h的值.

查看答案和解析>>

精英家教網已知點P1(x0,y0)為雙曲線
x2
8b2
-
y2
b2
=1
(b為正常數)上任一點,F2為雙曲線的右焦點,過P1作右準線的垂線,垂足為A,連接F2A并延長交y軸于P2
(1)求線段P1P2的中點P的軌跡E的方程;
(2)設軌跡E與x軸交于B、D兩點,在E上任取一點Q(x1,y1)(y1≠0),直線QB,QD分別交y軸于M,N兩點.求證:以MN為直徑的圓過兩定點.

查看答案和解析>>

精英家教網已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=2,且B1、B2分別是雙曲線虛軸的上、下端點.
(Ⅰ)若雙曲線過點Q(2,
3
),求雙曲線的方程;
(Ⅱ)在(Ⅰ)的條件下,若A、B是雙曲線上不同的兩點,且
B2A
B2B
,
B2A
B1B
,求直線AB的方程.

查看答案和解析>>

已知點P(3,0),點A、B分別在x軸負半軸和y軸上,且
BP
BA
=0,點C滿足
AC
=2
BA
,當點B在y軸上移動時,記點C的軌跡為E.
(1)求曲線E的方程;
(2)過點Q(1,0)且斜率為k的直線l交曲線E于不同的兩點M、N,若D(-1,0),且
DM
DN
>0,求k的取值范圍.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
且點P(3,
7
)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>


同步練習冊答案