由.解得點B坐標為. ------------8分 查看更多

 

題目列表(包括答案和解析)

對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:數學公式;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設數學公式,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設數學公式,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

(2009•浦東新區(qū)一模)對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到

,再利用可以結合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習冊答案