經(jīng)檢驗(yàn).上述直線均滿足. 查看更多

 

題目列表(包括答案和解析)

對(duì)于變量x與y,現(xiàn)在隨機(jī)得到4個(gè)樣本點(diǎn)A1(2,1),A2(3,2),A3(5,6),A4(4,5).小馬同學(xué)通過(guò)研究后,得到如下結(jié)論:
(1)四個(gè)樣本點(diǎn)的散點(diǎn)圖是一個(gè)平行四邊形的四個(gè)頂點(diǎn);
(2)平行四邊形A1A2A3A4的兩條對(duì)角線A1A3、A2A4所在的直線均可以作為這組樣本點(diǎn)的以變量x為解釋變量的用最小二乘法求出的回歸直線,所不同的是這兩條回歸直線所對(duì)應(yīng)的回歸方程的預(yù)報(bào)精度不同.你認(rèn)為上述結(jié)論正確嗎?試說(shuō)明理由.(參考數(shù)據(jù):
4
k=1
xk=14
,
4
k=1
xk2=54,
4
k=1
yk=14,
4
k=1
xkyk=58

查看答案和解析>>

已知離心率為
1
2
的橢圓
x2
a2
+
y2
b2
=1(a>b>0)與過(guò)點(diǎn)A(2,0)、B(0,1)的直線有且只有一個(gè)公共點(diǎn)P,點(diǎn)F是橢圓的右焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在x軸上是否存在一點(diǎn)M(m,0),使過(guò)M且與橢圓交于R、S兩點(diǎn)的任意直線l,均滿足∠RFP=∠SFP?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2012•奉賢區(qū)一模)出租車(chē)幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車(chē)幾何學(xué)中,點(diǎn)還是形如(x,y)的有序?qū)崝?shù)對(duì),直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來(lái)一樣.直角坐標(biāo)系內(nèi)任意兩點(diǎn)A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請(qǐng)解決以下問(wèn)題:
(1)求線段x+y=2(x≥0,y≥0)上一點(diǎn)M(x,y)的距離到原點(diǎn)O(0,0)的“距離”;
(2)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,求“圓周”上的所有點(diǎn)到點(diǎn)Q(a,b)的“距離”均為 r的“圓”方程;
(3)點(diǎn)A(1,3)、B(6,9),寫(xiě)出線段AB的垂直平分線的軌跡方程并畫(huà)出大致圖象.(說(shuō)明所給圖形小正方形的單位是1)

查看答案和解析>>

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請(qǐng)結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),收集數(shù)據(jù)如下:
加工零件x(個(gè)) 10 20 30 40 50
加工時(shí)間y(分鐘) 64 69 75 82 90
經(jīng)檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,那么對(duì)于加工零件的個(gè)數(shù)x與加工時(shí)間y這兩個(gè)變量,下列判斷正確的是( 。
A、成正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,75)
B、成正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,76)
C、成負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,76)
D、成負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,75)

查看答案和解析>>


同步練習(xí)冊(cè)答案