(A) 查看更多

 

題目列表(包括答案和解析)

(A)4-2矩陣與變換
已知二階矩陣M的特征值是λ1=1,λ2=2,屬于λ1的一個(gè)特征向量是e1=
1
1
,屬于λ2的一個(gè)特征向量是e2=
-1
2
,點(diǎn)A對(duì)應(yīng)的列向量是a=
1
4

(Ⅰ)設(shè)a=me1+ne2,求實(shí)數(shù)m,n的值.
(Ⅱ)求點(diǎn)A在M5作用下的點(diǎn)的坐標(biāo).

(B)4-2極坐標(biāo)與參數(shù)方程
已知直線l的極坐標(biāo)方程為ρsin(θ-
π
3
)=3
,曲線C的參數(shù)方程為
x=cosθ
y=3sinθ
,設(shè)P點(diǎn)是曲線C上的任意一點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

精英家教網(wǎng)(A)(不等式選講)不等式log3(|x-4|+|x+5|)>a對(duì)于一切x∈R恒成立,則實(shí)數(shù)a的取值范圍是
 

(B) (幾何證明選講)如圖,已知在△ABC中,∠C=90°,正方形DEFC內(nèi)接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,則正方形DEFC的邊長(zhǎng)等于
 
;
(C) (極坐標(biāo)系與參數(shù)方程)曲線ρ=2sinθ與ρ=2cosθ相交于A,B兩點(diǎn),則直線AB的方程為
 

查看答案和解析>>

(A)直線xcosα+ysinα-sinα-3=0與曲線
x=3cosβ
y=3sinβ+1
的位置關(guān)系是
 

(B)不等式|x+3|+|x-1|≥a2-3a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

(A)在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線C2θ=
π4
,若曲線C1與C2交于A、B兩點(diǎn),則線段AB=
 

(B)若|x-1|+x-2||+|x-3|≥m恒成立,則m的取值范圍為
 

查看答案和解析>>

(A)(不等式選做題)不等式|x+1|-|x-2|>2的解集為
(
3
2
,+∞)
(
3
2
,+∞)

(B)(幾何證明選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長(zhǎng)分別為6cm,8cm,以AC為直徑的圓與AB交于點(diǎn)D,則AD=
18
5
(或3.6)
18
5
(或3.6)
cm.
(C)(坐標(biāo)系與參數(shù)方程選做題)圓C的參數(shù)方程
x=1+cosα
y=1-sinα
(α為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,則直線l與圓C的交點(diǎn)的直角坐標(biāo)是
(0,1),或(2,1)
(0,1),或(2,1)

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A A

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)       (14)        (15)―1        (16)

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,

.解得

又 ∵ 0, ∴ .                                 12分

(18)(本小題滿分12分)

解:以A點(diǎn)為原點(diǎn),AB為軸,AD為軸,AD

軸的空間直角坐標(biāo)系,如圖所示.則依題意可知相

關(guān)各點(diǎn)的坐標(biāo)分別是A(0,0,0),B(,0,0),

C(,1,0),D(0,1,0),S(0,0,1),

   ∴ M(,1,0),N(,,).                                  2分

   ∴ (0,),,0,0),,,).    4分

   ∴ .∴ ,

   ∴ MN ⊥平面ABN.                                                      6分

   (Ⅱ)設(shè)平面NBC的法向量為,),則,.且又易知

   ∴   即    ∴

   令,則,0,).                                           9分

   顯然,(0,,)就是平面ABN的法向量.

   ∴ 二面角的余弦值是.                                    12分

(19)(本小題滿分12分)

解:(Ⅰ)由題意得

 

);                             3分

同理可得);

).                           5分

(Ⅱ)       8分

(Ⅲ)由上問知 ,即是關(guān)于的三次函數(shù),設(shè)

,則

,解得  或 (不合題意,舍去).

顯然當(dāng)  時(shí),;當(dāng)  時(shí),

∴ 當(dāng)年產(chǎn)量   時(shí),隨機(jī)變量  的期望  取得最大值.              12分

(20)(本小題滿分12分)

解:(Ⅰ)設(shè),)是函數(shù) 的圖象上任意一點(diǎn),則容易求得點(diǎn)關(guān)于直線  的對(duì)稱點(diǎn)為,),依題意點(diǎn),)在的圖象上,

. ∴ .            2分

 的一個(gè)極值點(diǎn),∴ ,解得

∴ 函數(shù)  的表達(dá)式是 ).            4分

∵ 函數(shù)  的定義域?yàn)椋?sub>), ∴  只有一個(gè)極值點(diǎn),且顯然當(dāng)

時(shí),;當(dāng)時(shí),

∴ 函數(shù)  的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.           6分

(Ⅱ)由 ,

,∴      9分

 在 時(shí)恒成立.

∴ 只需求出  在   時(shí)的最大值和  在

 時(shí)的最小值,即可求得  的取值范圍.

(當(dāng)  時(shí));

(當(dāng)  時(shí)).

∴   的取值范圍是 .                                         12分

 

(21)(本小題滿分12分)

解:(Ⅰ)∵ ,

設(shè)O關(guān)于直線

對(duì)稱點(diǎn)為的橫坐標(biāo)為

又易知直線  解得線段的中點(diǎn)坐標(biāo)

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設(shè)直線AN的方程為 ,代入 并整理得:. 

設(shè)點(diǎn),則

由韋達(dá)定理得 ,.                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點(diǎn)的橫坐標(biāo)

,代入,并整理得 .   10分

再將韋達(dá)定理的結(jié)果代入,并整理可得

∴ 直線ME與軸相交于定點(diǎn)(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ ,,且 ,N?),

∴  .                                                            2分

去分母,并整理得 .                      5分

,……,,

將這個(gè)同向不等式相加,得 ,∴ .    7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 


同步練習(xí)冊(cè)答案