22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數(shù)列滿足:,設

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數(shù)

 (1)求函數(shù)的單調區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點O,

<ul id="l7wji"><acronym id="l7wji"></acronym></ul>

    ∴PO⊥AC,

    又∵面PAC⊥面ABC,PO面PAC,

    ∴PO⊥面ABC,……………………2分

    連結OD,則OD//BC,

    ∴DO⊥AC,

    由三垂線定理知AC⊥PD.……………………4分

    (2)連接OB,過E作EF⊥OB于F,

    又∵面POB⊥面ABC,

    ∴EF⊥面ABC,

    過F作FG⊥AC,連接EG,

    由三垂線定理知EG⊥AC,

    ∴∠EGF即為二面角E―AC―B的平面角…………6分

    ……………………9分

    (3)由題意知

    .…………………………12分

    20.(本小題滿分12分)

    解:(1)設“生產(chǎn)一臺儀器合格”為事件A,則

    ……………………2分

    (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

    所以的分布列為:

    3

    2

    1

    0

    P

     

    的數(shù)學期望

    …………9分

    (3)該廠每生產(chǎn)一件儀器合格率為

    ∴每臺期望盈利為(萬元)

    ∴該廠每月期望盈利額為萬元……………………12分

    21.(本小題滿分12分)

    解:(1)設

    ,

    ,

    …………………………3分

    ,這就是軌跡E的方程.……………………4分

    (2)當時,軌跡為橢圓,方程為①…………5分

    設直線PD的方程為

    代入①,并整理,得

       ②

    由題意,必有,故方程②有兩上不等實根.

    設點

    由②知,………………7分

    直線QF的方程為

    時,令,

    代入

    整理得,

    再將代入,

    計算,得x=1,即直線QF過定點(1,0)

    當k=0時,(1,0)點……………………12分

    22.(本小題滿分14分)

    解:(1)

    由題知,即a-1=0,∴a=1.……………………………2分

    x≥0,∴≥0,≥0,

    又∵>0,∴x≥0時,≥0,

    上是增函數(shù).……………………4分

    (Ⅱ)由(Ⅰ)知

    下面用數(shù)學歸納法證明>0.

    ①當n=1時,=1>0成立;

    ②假設當時,>0,

    上是增函數(shù),

    >0成立,

    綜上當時,>0.……………………………………6分

    >0,1+>1,∴>0,

    >0,∴,…………………………………8分

    =1,∴≤1,綜上,0<≤1.……………………………9分

    (3)∵0<≤1,

    ,

    ,

    ,

    >0,………………………………………11分

    =??……

      =n.……………………………12分

    ∴Sn++…+

    +()2+…+()n

    ==1.

    ∴Sn<1.………………………………………………………………14分

     

     

     


    同步練習冊答案