(III)已知 查看更多

 

題目列表(包括答案和解析)

(理)已知函數(shù)f(x)=x2+bsinx-2,(b∈R),且對任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)a的取值范圍.
(III)討論函數(shù)h(x)=ln(1+x2)-
12
f(x)-k的零點個數(shù)?

查看答案和解析>>

 

(理)已知數(shù)列{an}的前n項和,且=1,

.

(I)求數(shù)列{an}的通項公式;

(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有

< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大小;

(III)求證:≤bn<2.

(文)如圖,|AB|=2,O為AB中點,直線過B且垂直于AB,過A的動直線與交于點C,點M在線段AC上,滿足=.

(I)求點M的軌跡方程;

(II)若過B點且斜率為- 的直線與軌跡M交于

         點P,點Q(t,0)是x軸上任意一點,求當ΔBPQ為

         銳角三角形時t的取值范圍.

 

 

 

 

查看答案和解析>>

(理)已知函數(shù)f(x)=x2+bsinx-2,(b∈R),且對任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)a的取值范圍.
(III)討論函數(shù)h(x)=ln(1+x2)-數(shù)學公式f(x)-k的零點個數(shù)?

查看答案和解析>>

(理)已知f(x)=ax+數(shù)學公式+2-2a(a>0)的圖象在點(1,f(1))處的切線與直線y=2x+1平行.
(I)求a,b滿足的關系式;
(II)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍;
(III)證明:數(shù)學公式…+數(shù)學公式數(shù)學公式(n∈N+

查看答案和解析>>

(理)已知函數(shù)f(x)=x2+bsinx-2,(b∈R),且對任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)a的取值范圍.
(III)討論函數(shù)h(x)=ln(1+x2)-
1
2
f(x)-k的零點個數(shù)?

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分.

1.B   2.C   3.【理】C  【文】B    4.A    5.C   6.D

7.C   8.C   9.【理】D   【文】B    10.A   11.B 12.【理】C  【文】D

二、填空題:本大題共4小題,每小題5分,共20分.

13. 2           14.           15.     16.    

三、解答題:本大題共6小題,共70分.

17.(本題滿分10分)

解:.……….2分

   (Ⅰ),

.             ………5分

   (Ⅱ)【理】    ………7分

,

.              ………10分

【文】        ………8分

 .          ………10分

18.(本題滿分12分)

解:(Ⅰ)甲射擊一次,未擊中目標的概率為,     ………2分

因此,甲射擊兩次,至少擊中目標一次的概率為.       ……...6分

(Ⅱ)設“甲、乙兩人各射擊兩次,甲擊中目標2次,乙未擊中”為事件;“甲、乙兩人各射擊兩次,乙擊中目標2次,甲未擊中”為事件;“甲、乙兩人各射擊兩次,甲、乙各擊中1次”為事件,

;               ………7分

;              ………8分

.          ………9分

因為事件“甲、乙兩人各射擊兩次,共擊中目標2次”為,而彼此互斥,

所以,甲、乙兩人各射擊兩次,共擊中目標2次的概率為

.           ……….12 分     

19.(本題滿分12分))

【理科】解:(Ⅰ)

兩式相減得

從而,           ………3分

,可知..

.

數(shù)列是公比為2,首項為4的等比數(shù)列,           ………5分

因此  ()          ………6分

   (Ⅱ)據(jù)(Ⅰ)

(當且僅當n=5時取等號).                ………10分

恒成立,

因此的最小值是   .    ………12分

   【文科】(Ⅰ)∵等差數(shù)列中,公差,

,                 ………3分

              ………6分

   (Ⅱ)      ,         ………8分

  令,即得,   ………10分

.

      數(shù)列為等差數(shù)列,∴存在一個非零常數(shù),使也為等差數(shù)列.   ………12分

20.(本題滿分12分)

證明(Ⅰ)法1:取中點,連接,

  ∵中點,

平行且等于,

 又∵E為BC的中點,四邊形為正方形,

平行且等于,

∴四邊形為平行四邊形,          ………3分

,又平面平面,

因此,平面.                ………5分

法2:取AD的中點M,連接EM和FM,

∵F、E為PD和BC中點,

,

∴平面,           ………3分

平面

因此,平面.              ………5分

解(Ⅱ)【理科】:連接,連接并延長,交延長線于一點,

連接,則為平面和平面的交線,

,           ………7分

平面,∴,

又∵,

平面

在等腰直角中,,

平面,

∴平面平面.           ………10分

又平面平面

平面

平面,∴為直線與平面所成的角.

,則,,

中,,

因此,直線與平面所成的角.….………………12分

   (Ⅱ)【文科】

    承接法2,,又,

,                         

平面,

∴平面平面.                ………7 分

平面

為直線與平面所成的角.  ………9 分

中,,

=.                   ………12分

21.(本小題滿分12分)

【理科】解:(I)設雙曲線C的焦點為

由已知,

,         ……………2分

設雙曲線的漸近線方程為,

依題意,,解得

∴雙曲線的兩條漸近線方程為

故雙曲線的實半軸長與虛半軸長相等,設為,則,得

∴雙曲線C的方程為             ……………6分.

(II)由,

直線與雙曲線左支交于兩點,

因此 ………………..9分

中點為

∴直線的方程為, 

x=0,得,

  ∴ 

∴故的取值范圍是.  ………………12分.

   【文科】解:(Ⅰ)由已知

于是……………..6分.

   (Ⅱ)

 

恒成立,

恒成立.      ……………….8分.

,則

上是增函數(shù),在上是減函數(shù),

從而處取得極大值所以的最大值是6,故.………………12分

 

 

22.(本小題滿分12分)

   【理科】解:(Ⅰ) ……………2分

為增函數(shù);

為減函數(shù),

可知有極大值為…………………………..4分

(Ⅱ)欲使上恒成立,只需上恒成立,

由(Ⅰ)知,,

……………………8分

(Ⅲ),由上可知上單調(diào)遞增,

  ①,

 同理  ②…………………………..10分

兩式相加得

    ……………………………………12分

【文科】見理科21題答案.

 

 

 

 [y1]Y cy


同步練習冊答案