題目列表(包括答案和解析)
已知圓交軸于兩點,曲線是以為長軸,直線為準線的橢圓.
(1)求橢圓的標準方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標。
已知圓:交軸于兩點,曲線是以為長軸,直線:為準線的橢圓.
(1)求橢圓的標準方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
已知圓:交軸于兩點,曲線是以為長軸,直線:為準線的橢圓.
(1)求橢圓的標準方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
已知圓:交軸于兩點,曲線是以為長軸,直線:為準線的橢圓.
(1)求橢圓的標準方程;
(2)若是直線上的任意一點,以為直徑的圓與圓相交于兩點,求證:直線必過定點,并求出點的坐標;
(3)如圖所示,若直線與橢圓交于兩點,且,試求此時弦的長.
已知曲線D:交軸于A、B兩點,曲線C是以AB為長軸,離心率的橢圓。
(1)求橢圓的標準方程;
(2)設M是直線上的任一點,以OM為直徑的圓交曲線D于P,Q兩點(O為坐標原點)。若直線PQ與橢圓C交于G,H兩點,交x軸于點E,且。試求此時弦PQ的長。
1.C 2.A 3.A 4.D 5. D 6.B 7. B 8. A 9. B 10.D
11. 12. 2 13. 14. 15.
16.解:(1)∵,∴,
∵,∴, 即邊的長度為。
(2)由,得…………①
,即…………②
由①②得,由正弦定理,∴,即證。
17. 解:(1)∵函數(shù)的圖象的對稱軸為要使在區(qū)間上為增函數(shù),當且僅當且。
依條件可知試驗的全部結果為,即
共15個整點。
所求事件為,即共5個整點,∴所求事件
的概率為。
(2)隨機變量的取值有:2,3,4,5,6。的隨機分布列為:
2
3
4
5
6
隨機變量的期望。
18.解法一:(1)易求,從而,由三垂線定理知:。
(2)法一:易求由勾股定理知,設點在面內(nèi)的射影為,過作于,連結,則為二面角的平面角。在中由面積法易求,由體積法求得點到面的距離是
,所以,所以求二面角的大小為。
法二:易求由勾股定理知,過作于,又過作交于,連結。則易證為二面角的平面角。在中由面積法易求,從而于是,所以
,在中由余弦定理求得。再在中由余弦定理求得。最后在中由余弦定理求得,所以求二面角的大小為。
(3)設AC與BD交于O,則OF//CM,所以CM//平面FBD,當P點在M或C時,三棱錐P―BFD的體積的最小。。
解法二:空間向量解法,略。
19.解:(1)
當時,
當時,此時函數(shù)遞減;當時,此時函數(shù)遞增;當時,取極小值,其極小值為0。
(2)由(1)可知函數(shù)和的圖像在處有公共點,因此若存在和的分界直線,則該直線過這個公共點。設分界直線的斜率為則直線方程為即由可得當時恒成立
由得。
下面證明當時恒成立。
令則
當時,。當時,此時函數(shù)遞增;當時,此時函數(shù)遞減;當時,取極大值,其極大值為0。
從而即恒成立。
函數(shù)和存在唯一的分界直線。
20.解:(1)設橢圓的標準方程為,則:
,從而:,故,所以橢圓的標準方程為。
(2)設,則圓方程為,與圓聯(lián)立消去得的方程為,過定點。
(3)將與橢圓方程聯(lián)立成方程組消去得:
,設,則。
,
所以。
故存在定點,使恒為定值。
21.解:(1)法一:數(shù)學歸納法;
法二:
所以為首項為公比為2的等比數(shù)列,
,即證。
法三:,兩邊同除以,轉(zhuǎn)化為疊加法求數(shù)列通項類型。
(2)法一:容易證明單調(diào)遞增,。由函數(shù)割線斜率與中點切線斜率的關系想到先證,即證,即證
。令下證。事實上,構造函數(shù),則
,,所以在上單調(diào)遞增,故,則,即證。
于是由有,
(因為)。
法二:要證,即證
,聯(lián)想到熟悉的不等式(證明如法一)。令,則 ,即證
,下同方法一。
法三:聯(lián)想到熟悉的不等式(證略)。令,則
,即證而,但驗算當時不成立。故單獨驗證時原不等式成立,經(jīng)驗證成立。下用數(shù)學歸納法證成立。
由,則,作差有。
①當時,成立。
②假設時,,則
當時,,
下證,顯然。所以,命題對時成立。綜上①②即證。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com