則.解得:.∴. 查看更多

 

題目列表(包括答案和解析)

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

6. 解析:因?yàn)閒(x)=ax+b有一個(gè)零點(diǎn)是2,所以f(2)=2a+b=0,所以b=-2a,所以,所以零點(diǎn)是

一所大學(xué)圖書館有6臺(tái)復(fù)印機(jī)供學(xué)生使用管理人員發(fā)現(xiàn),每臺(tái)機(jī)器的維修費(fèi)用與其使用的時(shí)間有一定的關(guān)系,根據(jù)去年一年的記錄,得到每周使用時(shí)間(單位:小時(shí))與年維修費(fèi)用(單位:元)的數(shù)據(jù)如下:

時(shí)間

33

21

31

37

46

42

費(fèi)用

16

14

25

29

38

34

則使用時(shí)間與維修費(fèi)用之間的相關(guān)系數(shù)為        

查看答案和解析>>

解析:A錯(cuò)誤.如圖①所示,由兩個(gè)結(jié)構(gòu)相同的三棱錐疊放在一起構(gòu)成的幾何體,各面都是三角形,但它不是棱錐.B錯(cuò)誤.如答圖②③所示,若△ABC不是直角三角形,或是直角三角形但旋轉(zhuǎn)軸不是直角邊,所得的幾何體都不是圓錐.C錯(cuò)誤.若六棱錐的所有棱都相等,則底面多邊形是正六邊形.由幾何圖形知,若以正六邊形為底面,側(cè)棱長必然要大于底面邊長.D正確.

答案:D

查看答案和解析>>

解關(guān)于的不等式

【解析】本試題主要考查了含有參數(shù)的二次不等式的求解,

首先對(duì)于二次項(xiàng)系數(shù)a的情況分為三種情況來討論,

A=0,a>0,a<0,然后結(jié)合二次函數(shù)的根的情況和圖像與x軸的位置關(guān)系,得到不等式的解集。

解:①若a=0,則原不等式變?yōu)?2x+2<0即x>1

此時(shí)原不等式解集為;   

②若a>0,則ⅰ)時(shí),原不等式的解集為

ⅱ)時(shí),原不等式的解集為;

  ⅲ)時(shí),原不等式的解集為。 

③若a<0,則原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911034560884068/SYS201207091104230776185555_ST.files/image013.png">

    原不等式的解集為

 

查看答案和解析>>

某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏,由政府投資興建了甲、乙兩個(gè)企業(yè),1997年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的.根據(jù)測算,該鄉(xiāng)從兩個(gè)企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.

(1)若以1997年為第一年,則該鄉(xiāng)從上述兩個(gè)企業(yè)獲得利潤最少的一年是哪一年,該年還需要籌集多少萬元才能解決溫飽問題?

(2)試估算到2005年底該鄉(xiāng)能否達(dá)到小康水平?為什么?

查看答案和解析>>


同步練習(xí)冊答案