又.∴為棱形. 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運用。

(1)證明:因為SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>

如圖,已知四棱錐P-ABCD的底面ABCD為等腰梯形,AB∥CD,AC⊥DB,AC與BD相交于點O,且頂點P在底面上的射影恰為O點,又BO=2,PO=,PB⊥PD。
(1)求異面直線PD與BC所成角的余弦值;
(2)求二面角P-AB-C的大。
(3)設點M在棱PC上,且=λ,問λ為何值時,PC⊥平面BMD。

查看答案和解析>>

如圖,已知四棱錐P-ABCD的底面ABCD為等腰梯形,AB∥DC,AC⊥BD,AC與BD相交于點O,且頂點P在底面上的射影恰為O點,又BO=2,PO=,PB⊥PD,
(Ⅰ)求異面直接PD與BC所成角的余弦值;
(Ⅱ)求二面角P-AB-C的大。
(Ⅲ)設點M在棱PC上,且=λ,問λ為何值時,PC⊥平面BMD。

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點,PE=2EC。

(I)     證明PC平面BED;

(II)   設二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關于線面垂直的證明以及線面角的求解的運用。

從題中的線面垂直以及邊長和特殊的菱形入手得到相應的垂直關系和長度,并加以證明和求解。

解法一:因為底面ABCD為菱形,所以BDAC,又

【點評】試題從命題的角度來看,整體上題目與我們平時練習的試題和相似,底面也是特殊的菱形,一個側面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學生來說就是比較有點難度的,因此最好使用空間直角坐標系解決該問題為好。

 

查看答案和解析>>

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,構成一個三棱錐.

(I)判別MN與平面AEF的位置關系,并給出證明;

(II)求多面體E-AFMN的體積.

                 

【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應是的一條中位線,則利用線線平行得到線面平行。

第二問因為平面BEF,……………8分

,

,又 ∴

(1)因翻折后B、C、D重合(如圖),

所以MN應是的一條中位線,………………3分

.………6分

(2)因為平面BEF,……………8分

,

,………………………………………10分

 ∴

 

查看答案和解析>>


同步練習冊答案