已知.是大于的正整數(shù).記.則有 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的通項an=2n﹣1(n=1,2,3,…),現(xiàn)將其中所有的完全平方數(shù)(即正整數(shù)的平方)抽出按從小到大的順序排列成一個新的數(shù)列{bn}.
(1)若bk=am,則正整數(shù)m關(guān)于正整數(shù)k的函數(shù)表達式為m=(    ).
(2)記Sn是數(shù)列 能取到的最大值等于(    ).

查看答案和解析>>

設(shè)f(x)是定義在D上的函數(shù),若對任何實數(shù)α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,則稱f(x)為定義在D上的下凸函數(shù).
(1)試判斷函數(shù)g(x)=2x(x∈R),數(shù)學(xué)公式是否為各自定義域上的下凸函數(shù),并說明理由;
(2)若h(x)=px2(x∈R)是下凸函數(shù),求實數(shù)p的取值范圍;
(3)已知f(x)是R上的下凸函數(shù),m是給定的正整數(shù),設(shè)f(0)=0,f(m)=2m,記Sf=f(1)+f(2)+f(3)+…+f(m),對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

(09年海淀區(qū)期中文)(14分)

       設(shè)是定義在D上的函數(shù),若對D中的任意兩個實數(shù),恒有,則稱為定義在D上的T函數(shù)。

   (I)試判斷函數(shù)是否為其定義域上的T函數(shù), 并說明理由;

   (II)若函數(shù)是R上的奇函數(shù),試證明不是R上的T函數(shù);

   (III)若對任何實數(shù)以及D中的任意兩個實數(shù)恒有

        ,則稱為定義在D上的C函數(shù)。已知是R上的C函數(shù),m是給定在正整數(shù),設(shè),且。對于滿足條件的任意函數(shù),試求的最大值。

查看答案和解析>>

(09年海淀區(qū)期中理)(14分) 

設(shè)是定義在區(qū)間D上的函數(shù),若對任何實數(shù)以及D中的任意兩數(shù),恒有,則稱為定義在D上的C函數(shù).

   (Ⅰ)試判斷函數(shù),是否為各自定義域上的C函數(shù),并說明理由;

   (Ⅱ)已知R上的C函數(shù),m是給定的正整數(shù),設(shè),且,記. 對于滿足條件的任意函數(shù),試求的最大值;

   (Ⅲ)若是定義域為R的函數(shù),且最小正周期為,試證明不是R上的C函數(shù).

查看答案和解析>>

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時,定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>


同步練習(xí)冊答案