10.設(shè)點.O為原點.若四邊形OABC是平行四邊形.則向量的夾角為 查看更多

 

題目列表(包括答案和解析)

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
ON
=y
OB

(1)求證:x與y的關(guān)系為y=
x
x+1
;
(2)設(shè)f(x)=
x
x+1
,定義函數(shù)F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為
1
2
的等比數(shù)列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
OM
=x
OA
,
ON
=y
OB

(1)求證:x與y的關(guān)系為y=
x
x+1
;
(2)設(shè)f(x)=
x
x+1
,定義函數(shù)F(x)=
1
f(x)
-1(0<x≤1)
,點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為
1
2
的等比數(shù)列,O為原點,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在點Q(1,m),使得
OP
OQ
?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
(1)求證:x與y的關(guān)系為;
(2)設(shè),定義函數(shù),點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為的等比數(shù)列,O為原點,令,是否存在點Q(1,m),使得?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

在平行四邊形OABC中,已知過點C的直線與線段OA,OB分別相交于點M,N.若
(1)求證:x與y的關(guān)系為
(2)設(shè),定義函數(shù),點列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項為1,公比為的等比數(shù)列,O為原點,令,是否存在點Q(1,m),使得?若存在,請求出Q點坐標;若不存在,請說明理由.
(3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對稱,當(dāng)方程在x∈[2k,2k+2](k∈N)上有兩個不同的實數(shù)解時,求實數(shù)a的取值范圍.

查看答案和解析>>

8、如圖,圓弧型聲波DFE從坐標原點O向外傳播.若D是DFE弧與x軸的交點,設(shè)OD=x(0≤x≤a),圓弧型聲波DFE在傳播過程中掃過平行四邊形OABC的面積為y(圖中陰影部分),則函數(shù)y=f(x)的圖象大致是( 。

查看答案和解析>>

 

一、選擇題:

1―6DABADD    7―12DCABBB

二、填空題:

13.-10

14.

15.4

16.①②⑤

三、解答題:

17.(本題滿分10分)

       解:(I)由向量

    <wbr id="jqnxn"><tt id="jqnxn"></tt></wbr>
    <code id="jqnxn"><optgroup id="jqnxn"></optgroup></code>
    <dl id="jqnxn"><span id="jqnxn"><pre id="jqnxn"></pre></span></dl>

    20090325

           又

           則…………4分

       (II)由余弦定理得

          

           所以時等號成立…………9分

           所以…………10分

    18.(本小題滿分12分)

           解:(I)解:由已知條件得

           …………2分

           即…………6分

           答:

       (II)解:設(shè)至少有兩量車被堵的事件為A…………7分

           則…………12分

           答:至少有兩量車被堵的概率為

    19.(本題滿分12分)

           解:(法一)

       (I)DF//BC,

          

           平面ACC1A1

           …………2分

          

    …………4分

       (II)

           點B1到平面DEF的距離等于點C1到平面DEF的距離

          

          

           設(shè)就是點C1到平面DEF的距離…………6分

           由題設(shè)計算,得…………8分

       (III)作于M,連接EM,因為平面ADF,

           所以為所求二面角的平面角。

           則

           則M為AC中點,即M,D重合,…………10分

           則,所以FD與BC平行,

           所以F為AB中點,即…………12分

       (法二)解:以C點為坐標原點,CA所在直線為軸,CB所在直線為軸,CC1所在直線為z軸建立空間直角坐標系…………1分

       (1)由

    <ins id="jqnxn"><label id="jqnxn"></label></ins>
      •       

               …………4分

           (II)

              

               又…………6分

               …………8分

           (III)設(shè),平面DEF的法向量

               …………10分

              

               即F為線段AB的中點,

               …………12分

         

         

         

         

         

        20.(本題滿分12分)

               解:(I)由

              

               …………6分

           (II)由

               得

              

               是等差數(shù)列;…………10分

              

              

               …………12分

        21.(本題滿分12分)

               解:(I)…………2分

               又…………4分

           (II)

              

               且

               …………8分

              

               …………12分

        22.(本題滿分12分)

               解:(1)A1(-1,0),A2(1,0),F(xiàn)1(-2,0),F(xiàn)2(2,0)

              

              

               …………4分

           (II)設(shè)

               直線PF1與雙曲線交于

               直線PF2與雙曲線交于

              

               令

              

               …………6分

              

               而

        * 直線PF1與雙曲線交于兩支上的兩點,

        同理直線PF2與雙曲線交于兩支上的兩點

               則…………8分

              

               …………10分

               解得

              

         


        同步練習(xí)冊答案
        <pre id="jqnxn"><td id="jqnxn"></td></pre>