(2)是否存在實數(shù).使得對任意.恒成立?若不存在.請說明理由.若存在.求出的值并加以證明. 查看更多

 

題目列表(包括答案和解析)

是否存在常數(shù)c,使得不等式≤c≤對任意正實數(shù)x,y恒成立?證明你的結(jié)論.

查看答案和解析>>

對任意實數(shù)、,函數(shù)、滿足,且,,

(1)求、的通項公式;

(2)設,求數(shù)列的前項和;

(3)已知,設,是否存在整數(shù),使得不等式對任意正整數(shù)恒成立?若存在,分別求出的集合,并求出的最小值;若不存在,請說明理由。

查看答案和解析>>

若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間(0,
π2
)
上滿足L-條件;
(2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間數(shù)學公式上滿足L-條件;
(2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

若存在常數(shù)L,使得對任意x1,x2∈I且x1≠x2,都有|f(x1)-f(x2)|≤L|x1-x2|,則稱函數(shù)f(x)在區(qū)間I上滿足L-條件.
(1)求證:正弦函數(shù)f(x)=sinx在開區(qū)間上滿足L-條件;
(2)如果存在實數(shù)M,使得|f'(x)|≤M在區(qū)間I上恒成立,那么函數(shù)f(x)在I上是否滿足L-條件?若滿足,給出證明;若不滿足,舉出反例.

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.B;    7.B;    8.B;    9.D;     10.B;

二.填空題 (本大題共7小題,每題4分,共28分)

11.6ec8aac122bd4f6e;  12.6ec8aac122bd4f6e; 6ec8aac122bd4f6e6ec8aac122bd4f6e;   14.6ec8aac122bd4f6e,6ec8aac122bd4f6e;  15.6ec8aac122bd4f6e;  16.6ec8aac122bd4f6e;  17.6ec8aac122bd4f6e

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因為6ec8aac122bd4f6e,所以6ec8aac122bd4f6e,得6ec8aac122bd4f6e…………3分

    又因為6ec8aac122bd4f6e…………………………………3分

(2)由6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e,…………………………………2分

    所以6ec8aac122bd4f6e,…………………………………2分

    6ec8aac122bd4f6e,…………………………………2分

    6ec8aac122bd4f6e………………………………2分

6ec8aac122bd4f6e19.如圖建立空間直角坐標系,                  

 則6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e……………………1分

    (1)6ec8aac122bd4f6e,………………1分

        6ec8aac122bd4f6e,……………………1分

       6ec8aac122bd4f6e ……………………1分

      ∴6ec8aac122bd4f6e,6ec8aac122bd4f6e……2分

     又6ec8aac122bd4f6e6ec8aac122bd4f6e相交,所以6ec8aac122bd4f6e平面6ec8aac122bd4f6e……1分

(2)設平面6ec8aac122bd4f6e的一個法向量為6ec8aac122bd4f6e,

因為6ec8aac122bd4f6e,所以可取6ec8aac122bd4f6e…………………………………………………2分

又平面6ec8aac122bd4f6e的一個法向量為6ec8aac122bd4f6e……………………………………………2分

6ec8aac122bd4f6e  …………………………2分

∴二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e……………………………………………1分

20.解:(1)拋一次骰子面朝下的點數(shù)有l(wèi)、2、3、4四種情況,

而點數(shù)大于2的有2種,故闖第一關成功的概率6ec8aac122bd4f6e……………………2分

6ec8aac122bd4f6e(2)記事件“拋擲6ec8aac122bd4f6e次骰子,各次面朝下的點數(shù)之和大于6ec8aac122bd4f6e”為事件6ec8aac122bd4f6e,

6ec8aac122bd4f6e

拋二次骰子面朝下的點數(shù)和

情況如右圖所示,

6ec8aac122bd4f6e…………………………………………2分

拋三次骰子面朝下的點數(shù)依次記為:6ec8aac122bd4f6e,6ec8aac122bd4f6e

考慮6ec8aac122bd4f6e的情況

6ec8aac122bd4f6e時,6ec8aac122bd4f6e有1種,6ec8aac122bd4f6e時,6ec8aac122bd4f6e有3種

6ec8aac122bd4f6e時,6ec8aac122bd4f6e有6種,6ec8aac122bd4f6e時,6ec8aac122bd4f6e有10種

6ec8aac122bd4f6e……………………………4分

由題意知6ec8aac122bd4f6e可取0、1、2、3,

6ec8aac122bd4f6e,………………………1分

6ec8aac122bd4f6e,………………………1分

6ec8aac122bd4f6e,………………………1分

6ec8aac122bd4f6e,………………………1分

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e的分布列為:

 

 

 

   6ec8aac122bd4f6e……………………2分

21.(1)法一:由已知6ec8aac122bd4f6e………………………………1分

    設6ec8aac122bd4f6e,則6ec8aac122bd4f6e,……………………………1分

    6ec8aac122bd4f6e,………………………1分

    由6ec8aac122bd4f6e得,6ec8aac122bd4f6e,

解得6ec8aac122bd4f6e………………………2分

法二:記A點到準線距離為6ec8aac122bd4f6e,直線6ec8aac122bd4f6e的傾斜角為6ec8aac122bd4f6e,

由拋物線的定義知6ec8aac122bd4f6e,………………………2分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e………………………3分

(2)設6ec8aac122bd4f6e,6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,………………………1分

首先由6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e,同理6ec8aac122bd4f6e……………………2分

6ec8aac122bd4f6e6ec8aac122bd4f6e,…………………………2分

即:6ec8aac122bd4f6e

    ∴6ec8aac122bd4f6e,…………………………2分

6ec8aac122bd4f6e,得6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e得,

6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e…………………………3分

22.(1)6ec8aac122bd4f6e時,6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e,………………………2分

6ec8aac122bd4f6e

所以切線方程為6ec8aac122bd4f6e………………………2分

(2)1°當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,

再令6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e上遞減,

∴當6ec8aac122bd4f6e時,6ec8aac122bd4f6e

6ec8aac122bd4f6e,所以6ec8aac122bd4f6e6ec8aac122bd4f6e上遞增,6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e……………………5分

6ec8aac122bd4f6e時,6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

由1°知當6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e上遞增

6ec8aac122bd4f6e時,6ec8aac122bd4f6e,6ec8aac122bd4f6e

所以6ec8aac122bd4f6e6ec8aac122bd4f6e上遞增,∴6ec8aac122bd4f6e

6ec8aac122bd4f6e;………………………5分

由1°及2°得:6ec8aac122bd4f6e………………………1分

 

 

命題人

呂峰波(嘉興)、 王書朝(嘉善)、 王云林(平湖)

胡水林(海鹽)、 顧貫石(海寧)、  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強、吳林華

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案