(Ⅲ)取EF中點G.EB中點H.連結DG.GH.DH.∵DE=DF.∴ 查看更多

 

題目列表(包括答案和解析)

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經軸對稱變換后的圖形為A′C′.
①當t>
35
時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經軸對稱變換后的圖形為A′C′.
①當t>時,連接C′C,設四邊形ACC′A′的面積為S,求S關于t的函數關系式;
②當線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

精英家教網如圖,四邊形ABCD為正方形,四邊形BDEF為矩形,AB=2BF,DE丄平面ABCD,G為EF中點.
(1)求證:CF∥平面ADE;
(2)求證:平面ABG丄平面CDG.

查看答案和解析>>

在矩形ABCD中,AB=2,BC=1,取AB中點E,CD中點F,若沿EF將矩形AEFD折起,使得平面AEF⊥平面EFB,則AE中點Q到平面BFD的距離為
2
2
2
2

查看答案和解析>>

如圖,已知多面體EABCDF的底面ABCD是正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且EA=2FD.
(1)求證:CB⊥平面ABE;
(2)連接AC,BD交于點O,取EC中點G.證明:FG∥平面ABCD.

查看答案和解析>>


同步練習冊答案