(Ⅱ)求直線(xiàn)與平面所成的角的正弦值. 查看更多

 

題目列表(包括答案和解析)

在平面四邊形ABCD中,△ABC為正三角形,△ADC為等腰直角三角形,AD=DC=2,將△ABC沿AC折起,使點(diǎn)B至點(diǎn)P,且PD=2數(shù)學(xué)公式,M為PA的中點(diǎn),N在線(xiàn)段PD上.

(I)若PA⊥平面CMN,求證:AD∥平面CMN;
(II)求直線(xiàn)PD與平面ACD所成角的余弦值.

查看答案和解析>>

在平面四邊形ABCD中,△ABC為正三角形,△ADC為等腰直角三角形,AD=DC=2,將△ABC沿AC折起,使點(diǎn)B至點(diǎn)P,且PD=2,M為PA的中點(diǎn),N在線(xiàn)段PD上.

(I)若PA⊥平面CMN,求證:AD∥平面CMN;
(II)求直線(xiàn)PD與平面ACD所成角的余弦值.

查看答案和解析>>




(1)求證:平面
(2)求二面角的大小
(3)求直線(xiàn)AB與平面所成線(xiàn)面角的正弦值

查看答案和解析>>

如圖,平面ABCD⊥平面ABEF,ABCD是邊長(zhǎng)為1的正方形,ABEF是矩形,且AF=
12
,G是線(xiàn)段EF的中點(diǎn).
(Ⅰ)求證:AG⊥平面BCG;
(Ⅱ)求直線(xiàn)BE與平面ACG所成角的正弦值的大。

查看答案和解析>>

如圖,平面PAD⊥平面ABCD,四邊形ABCD為正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分別是線(xiàn)段PA、PD、CD的中點(diǎn).
(1)求證:EF⊥平面PAB;
(2)求異面直線(xiàn)EG與BD所成的角的余弦值.

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:過(guò)C作CE⊥AB于E,連接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直線(xiàn)PC與平面PAB所成的角為,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

    <center id="s9p2q"><label id="s9p2q"><u id="s9p2q"></u></label></center>
      <span id="s9p2q"><center id="s9p2q"></center></span>

      市一次模文數(shù)參答―1(共2頁(yè))

                                                                                              5分

      (2),時(shí)取得極值.由.                                                                                          8分

      ,,∴當(dāng)時(shí),,

      上遞減.                                                                                       12分

      ∴函數(shù)的零點(diǎn)有且僅有1個(gè)     15分

       

      22.解:(1) 設(shè),由已知,

      ,                                        2分

      設(shè)直線(xiàn)PB與圓M切于點(diǎn)A,

      ,

                                                       6分

      (2) 點(diǎn) B(0,t),點(diǎn),                                                                  7分

      進(jìn)一步可得兩條切線(xiàn)方程為:

      ,                                   9分

      ,,

      ,,                                          13分

      ,又時(shí),,

      面積的最小值為                                                                            15分

       

       

      www.ks5u.com

       


      同步練習(xí)冊(cè)答案