題目列表(包括答案和解析)
1 |
2 |
數(shù)(b、c、d為常數(shù)),已知當(dāng)或時(shí)只有一個(gè)實(shí)根,當(dāng)時(shí),有三個(gè)相異實(shí)根,現(xiàn)給出下面命題:
①和有一個(gè)相同實(shí)數(shù)根
②和有一個(gè)相同的實(shí)根
③的任一根大于的任一根
④的任一根小于的任一根.
其中錯(cuò)誤命題的個(gè)數(shù)是( )
A. 4 B.3 C. 2 D.1
(理)已知向量=(2,4,x),=(2,y,2),若||=6,⊥,則x+y的值
是( )
A.-3或1 B.3或-1 C.-3 D.1
(文)某電信部門執(zhí)行的新的電話收費(fèi)標(biāo)準(zhǔn)中,其中本地網(wǎng)營業(yè)區(qū)內(nèi)的通話費(fèi)標(biāo)準(zhǔn):前3分鐘為0.20元(不足3分鐘按3分鐘計(jì)算),以后的每分鐘收0.10元(不足1分鐘按1分鐘計(jì)算。)在一次實(shí)習(xí)作業(yè)中,某同學(xué)調(diào)查了A、B、C、D、E五人某天撥打的本地網(wǎng)營業(yè)區(qū)內(nèi)的電話通話時(shí)間情況,其原始數(shù)據(jù)如下表所示:
|
A |
B |
C |
D |
E |
第一次通話時(shí)間 |
3分 |
3分45秒 |
3分55秒 |
3分20秒 |
6分 |
第二次通話時(shí)間 |
0分 |
4分 |
3分40秒 |
4分50秒 |
0分 |
第三次通話時(shí)間 |
0分 |
0分 |
5分 |
2分 |
0分 |
應(yīng)繳話費(fèi)(元) |
|
|
|
|
|
(1)在上表中填寫出各人應(yīng)繳的話費(fèi);
(2)設(shè)通話時(shí)間為t分鐘,試根據(jù)上表完成下表的填寫(即這五人在這一天內(nèi)的通話情況統(tǒng)計(jì)表):
時(shí)間段 |
頻數(shù)累計(jì) |
頻數(shù) |
頻率 |
累計(jì)頻率 |
0<t≤3 |
┯ |
2 |
0.2 |
0.2 |
3<t≤4 |
|
|
|
|
4<t≤5 |
|
|
|
|
5<t≤6 |
|
|
|
|
合計(jì) |
正 正 |
|
|
|
(3)若該本地網(wǎng)營業(yè)區(qū)原來執(zhí)行的電話收費(fèi)標(biāo)準(zhǔn)是:每3分鐘為0.20元(不足3分鐘按3分鐘計(jì)算)。問這五人這天的實(shí)際平均通話費(fèi)與原通話標(biāo)準(zhǔn)下算出的平均通話費(fèi)相比,是增多了還是減少了?增或減了多少?
(文)某電信部門執(zhí)行的新的電話收費(fèi)標(biāo)準(zhǔn)中,其中本地網(wǎng)營業(yè)區(qū)內(nèi)的通話費(fèi)標(biāo)準(zhǔn):前3分鐘為0.20元(不足3分鐘按3分鐘計(jì)算),以后的每分鐘收0.10元(不足1分鐘按1分鐘計(jì)算。)在一次實(shí)習(xí)作業(yè)中,某同學(xué)調(diào)查了A、B、C、D、E五人某天撥打的本地網(wǎng)營業(yè)區(qū)內(nèi)的電話通話時(shí)間情況,其原始數(shù)據(jù)如下表所示:
| A | B | C | D | E |
第一次通話時(shí)間 | 3分 | 3分45秒 | 3分55秒 | 3分20秒 | 6分 |
第二次通話時(shí)間 | 0分 | 4分 | 3分40秒 | 4分50秒 | 0分 |
第三次通話時(shí)間 | 0分 | 0分 | 5分 | 2分 | 0分 |
應(yīng)繳話費(fèi)(元) | | | | | |
時(shí)間段 | 頻數(shù)累計(jì) | 頻數(shù) | 頻率 | 累計(jì)頻率 |
0<t≤3 | ┯ | 2 | 0.2 | 0.2 |
3<t≤4 | | | | |
4<t≤5 | | | | |
5<t≤6 | | | | |
合計(jì) | 正 正 | | | |
1-10.CDBBA CACBD
11. 12. ①③④ 13.-2或1 14. 、 15.2 16. 17..
18.
解:(1)由已知 7分
(2)由 10分
由余弦定理得 14分
19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC, 3分
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC. 5分
(2)解:過C作CE⊥AB于E,連接PE,
∵PA⊥底面ABCD,∴CE⊥面PAB,
∴直線PC與平面PAB所成的角為, 10分
∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,
中求得CE=,∴. 14分
20.解:(1)由①,得②,
②-①得:. 4分
(2)由求得. 7分
∴, 11分
∴. 14分
21.解:
(1)由得c=1 1分
, 4分
|