2.已知條件p:內(nèi)是增函數(shù).條件q:.則p是q成立的 A 充要條件 B 充分不必要條件 C 必要不充分條件 D 既不充分又不必要條件 查看更多

 

題目列表(包括答案和解析)

已知命題p:y=ax是增函數(shù),qy=2x是減函數(shù),若pq是真命題,求a的取值范圍.

查看答案和解析>>

已知函數(shù)在區(qū)間內(nèi)是增函數(shù),則實數(shù)的取值范圍是(  )

    A.         B.              C.         D.

 

查看答案和解析>>

(本小題滿分13分)已知命題p:  函數(shù)上是增函數(shù)  命題q: 恒成立。若p或q為真命題,命題p且q為假,

求m的范圍。

 

查看答案和解析>>

、已知函數(shù)在定義域內(nèi)是增函數(shù),則實數(shù)的取值范圍(  )

A、      B、       C、        D、

 

查看答案和解析>>

已知函數(shù)在定義域內(nèi)是增函數(shù),則實數(shù)的取值范圍為_________

 

查看答案和解析>>

說明:

    一、本解答給出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制定相應的評分細則。

二、對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后續(xù)部分的給分,但不得超過該部分正確解答所給分數(shù)的一半;如果后續(xù)部分的解答存在較嚴重的錯誤,則不再給分。

三、解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù)。

四、每題只給整數(shù)分數(shù),選擇題和填空題不給中間分。

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

C

C

D

A

A

B

C

B

D

二、填空題:

11.40.6,1.1  12. 13. 14.30  15.  16.(1,1),(2,2),(3,4),(4,8)

三、解答題:

  17.(Ⅰ),                         ①            …………………2分

    又, ∴                 ②             ……………… 4分

    由①、②得              …………………………………………………………… 6分

   (Ⅱ)  ……………………………………… 8分

                 …………………………………………………………………… 10分

     …………………………………………………………………………12分

18.(Ⅰ)設點,則,

,

,又,

,∴橢圓的方程為:    …………………………………………7分

(Ⅱ)當過直線的斜率不存在時,點,則;

     當過直線的斜率存在時,設斜率為,則直線的方程為,

,由    得:

       …………………………………………10分

 

                                           ……13分

綜合以上情形,得:    ……………………………………………………14分

∴GH∥AD∥EF,∴E,F(xiàn),G,H四點共面. ……………………1分

又H為AB中點,∴EH∥PB. 又EH面EFG,PB平面EFG,

∴PB∥平面EFG.                 ………………………………4分

   (Ⅱ)取BC的中點M,連結GM、AM、EM,則GM//BD,

∴∠EGM(或其補角)就是異面直線EG與BD所成的角.……6分

     在Rt△MAE中, ,

     同理,又GM=,………………7分

∴在△MGE中,     ………………8分

故異面直線EG與BD所成的角為arccos,                   ………………………………9分

又AB∩PA=A,∴AD⊥平面PAB. ……………………………………10分

又∵E,F(xiàn)分別是PA,PD中點,∴EF∥AD,∴EF⊥平面PAB.   

又EF面EFQ,∴面EFQ⊥面PAB. ………………………………11分

過A作AT⊥ER于T,則AT⊥平面EFQ,

∴AT就是點A到平面EFQ的距離. ………………………………12分

,則

    在,            …………………………13分

     解得 故存在點Q,當CQ=時,點A到平面EFQ的距離為0.8. ……………………… 14分

解法二:建立如圖所示的空間直角坐標系A-xyz,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

<rt id="kik1e"><pre id="kik1e"></pre></rt>
<li id="kik1e"><ins id="kik1e"></ins></li>
  •    (Ⅰ) …………1分

        設,  即,

       

                  ……………3分

        ,∴PB∥平面EFG. ………………………………………………………… 4分

       (Ⅱ)∵,              …………………………………………5分

        ,            ……………………… 8分

    故異面直線EG與BD所成的角為arcos.            …………………………………… 9分

       (Ⅲ)假設線段CD上存在一點Q滿足題設條件,令

        ∴點Q的坐標為(2-m,2,0), ……………………………………10分

        而, 設平面EFQ的法向量為,則

         

        令,             ……………………………………………………12分

        又, ∴點A到平面EFQ的距離,……13分

        即,不合題意,舍去.

        故存在點Q,當CQ=時,點A到平面EFQ的距離為0.8.           ……………………14分

    20. (Ⅰ),          ………………2分

    時,,        …………4分

       (Ⅱ)是單調(diào)增函數(shù);   ………………6分

    是單調(diào)減函數(shù);      ………………8分

       (Ⅲ)是偶函數(shù),對任意都有成立

    *  對任意都有成立

    1°由(Ⅱ)知當時,是定義域上的單調(diào)函數(shù),

    對任意都有成立

    時,對任意都有成立                   …………10分

    2°當時,,由

    上是單調(diào)增函數(shù)在上是單調(diào)減函數(shù),∴對任意都有

    時,對任意都有成立               ………………12分

    綜上可知,當時,對任意都有成立           .……14分

    21、(Ⅰ)設等差數(shù)列{}的公差是,則,解得

    所以                ……………………………………2分

    =-1<0

    適合條件①;又,所以當=4或5時,取得最大值20,即≤20,適合條件②。綜上所述, …………………………………………4分

    (Ⅱ)因為,所以當n≥3時,,此時數(shù)列單調(diào)遞減;當=1,2時,,即

    因此數(shù)列中的最大項是,所以≥7………………………………………………………8分

    (Ⅲ)假設存在正整數(shù),使得成立,

    由數(shù)列的各項均為正整數(shù),可得                ……………10分

    因為                 ……11分

    由              …13分

    因為

    依次類推,可得            ……………………………………………15分

    又存在,使,總有,故有,這與數(shù)列()的各項均為正整數(shù)矛盾!

    所以假設不成立,即對于任意,都有成立.           ………………………16分

     


    同步練習冊答案