<pre id="m5n3j"><span id="m5n3j"></span></pre>
<button id="m5n3j"><dl id="m5n3j"></dl></button>
  • ③如果函數(shù)對任意的都滿足.則函數(shù)是周期函數(shù), 查看更多

     

    題目列表(包括答案和解析)

    如果函數(shù)f(x)=
    1
    3
    x3-a2x
    滿足:對于任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤1恒成立,則a的取值范圍是( 。
    A、[-
    2
    3
    3
    ,
    2
    3
    3
    ]
    B、(-
    2
    3
    3
    ,
    2
    3
    3
    )
    C、[-
    2
    3
    3
    ,0)∪(0,
    2
    3
    3
    ]
    D、(-
    2
    3
    3
    ,0)∪(0,
    2
    3
    3
    )

    查看答案和解析>>

    如果函數(shù)f (x)滿足:對任意的實數(shù) x,y都有 f ( x+y )=f ( x )•f ( y ) 且f ( 1 )=2,則
    f(2)
    f(1)
    +
    f(4)
    f(2)
    +
    f(6)
    f(3)
    +
    f(8)
    f(4)
    +…+
    f(20)
    f(10)
    =
     

    查看答案和解析>>

    如果函數(shù)f(x)滿足下列條件:
    ①對于任意x∈[0,1],f(x)≥0,且f(0)=0,f(1)=1;
    ②對于滿足條件0≤x1≤1,0≤x2≤1,0≤x1+x2≤1的任意兩個數(shù)x1,x2
    都有f(x1+x2)≥f(x1)+f(x2).則稱函數(shù)f(x)為Γ函數(shù).
    (Ⅰ)分別判斷函數(shù)f1(x)=x與f2(x)=sin
    π
    2
    x是否為Γ函數(shù),并說明理由;
    (Ⅱ)證明:對于任意的0≤x≤y≤1,有f(x)≤f(y);
    (Ⅲ)不等式f(x)≤
    3
    2
    x對于一切x∈[0,1]都成立嗎?證明你的結(jié)論.

    查看答案和解析>>

    如果函數(shù)f(x)滿足在集合N*上的值域仍是集合N*,則把函數(shù)f(x)稱為N函數(shù).例如:f(x)=x就是N函數(shù).
    (Ⅰ)判斷下列函數(shù):①y=x2,②y=2x-1,③y=[
    x
    ]中,哪些是N函數(shù)?(只需寫出判斷結(jié)果);
    (Ⅱ)判斷函數(shù)g(x)=[lnx]+1是否為N函數(shù),并證明你的結(jié)論;
    (Ⅲ)證明:對于任意實數(shù)a,b,函數(shù)f(x)=[b•ax]都不是N函數(shù).
    (注:“[x]”表示不超過x的最大整數(shù))

    查看答案和解析>>

    如果函數(shù)f(x)滿足:對任意的實數(shù)n,m都有f(n+m)=f(n)+f(m)+12且f(n+m)=f(n)+f(m)+
    1
    2
    f(
    1
    2
    )=0,則f(1)+f(2)+f(3)+…+f(n)(n∈N*)等于( 。
    A、n
    B、n2
    C、
    n2
    2
    D、
    n2
    4

    查看答案和解析>>

    一、選擇題:

    1.D  2.A  3  B  4.D 5.A 6.D 7.B 8.C   9.A  10.B  11.A  12.B

    二、填空題:

    13.12           14.6ec8aac122bd4f6e    15   3           16.,①②③④   

    三、解答題:

    17.解:法(1):①∵6ec8aac122bd4f6e=(1+cosB,sinB)與6ec8aac122bd4f6e=(0,1)所成的角為6ec8aac122bd4f6e

    6ec8aac122bd4f6e與向量6ec8aac122bd4f6e=(1,0)所成的角為6ec8aac122bd4f6e                                                    

    6ec8aac122bd4f6e,即6ec8aac122bd4f6e                                                   (2分)

    而B∈(0,π),∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴B=6ec8aac122bd4f6e。                             (4分)

    ②令A(yù)B=c,BC=a,AC=b

    ∵B=6ec8aac122bd4f6e,∴b2=a2+c2-2accosB=a2+c2-ac=6ec8aac122bd4f6e,∵a,c>0。             (6分)

    ∴a2+c26ec8aac122bd4f6e,ac≤6ec8aac122bd4f6e (當(dāng)且僅當(dāng)a=c時等號成立)

    ∴12=a2+c2-ac≥6ec8aac122bd4f6e6ec8aac122bd4f6e                                               (8分)

    ∴(a+c)2≤48,∴a+c≤6ec8aac122bd4f6e,∴a+b+c≤6ec8aac122bd4f6e+6ec8aac122bd4f6e=6ec8aac122bd4f6e(當(dāng)且僅當(dāng)a=c時取等號)

    故ΔABC的周長的最大值為6ec8aac122bd4f6e。                                                           (10分)

    法2:(1)cos<6ec8aac122bd4f6e,6ec8aac122bd4f6e>=cos6ec8aac122bd4f6e

    6ec8aac122bd4f6e,                                                                                   (2分)

    即2cos2B+cosB-1=0,∴cosB=6ec8aac122bd4f6e或cosB=-1(舍),而B∈(0,π),∴B=6ec8aac122bd4f6e (4分)

    (2)令A(yù)B=c,BC=a,AC=b,ΔABC的周長為6ec8aac122bd4f6e,則6ec8aac122bd4f6e=a+c+6ec8aac122bd4f6e

    而a=b?6ec8aac122bd4f6e,c=b?6ec8aac122bd4f6e                                      (2分)

    6ec8aac122bd4f6e=6ec8aac122bd4f6e=6ec8aac122bd4f6e

    =6ec8aac122bd4f6e                                (8分)

    ∵A∈(0,6ec8aac122bd4f6e),∴A-6ec8aac122bd4f6e,

    當(dāng)且僅當(dāng)A=6ec8aac122bd4f6e時,6ec8aac122bd4f6e。                                         (10分)

     18.解法一:(1)∵PA⊥底面ABCD,BC6ec8aac122bd4f6e平面AC,∴PA⊥BC

    ∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC

    (2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1

    ∴ΔADC為等邊三角形,且AC=1,取AC的中點O,則DO⊥AC,又PA⊥底面ABCD,

    ∴PA⊥DO,∴DO⊥平面PAC,過O作OH⊥PC,垂足為H,連DH

    由三垂成定理知DH⊥PC,∴∠DHO為二面角D-PC-A的平面角

    由OH=6ec8aac122bd4f6e,DO=6ec8aac122bd4f6e,∴tan∠DHO=6ec8aac122bd4f6e=2

    ∴二面角D-PC-A的大小的正切值為2。

    6ec8aac122bd4f6e(3)設(shè)點B到平面PCD的距離為d,又AB∥平面PCD

    ∴VA-PCD=VP-ACD,即6ec8aac122bd4f6e

    6ec8aac122bd4f6e  即點B到平面PCD的距離為6ec8aac122bd4f6e。

    19.解:(1)第一和第三次取球?qū)Φ谒拇螣o影響,計第四次摸紅球為事件A

    ①第二次摸紅球,則第四次摸球時袋中有4紅球概率為

    6ec8aac122bd4f6e                                                                            (2分)

    ②第二次摸白球,則第四次摸球時袋中有5紅2白,摸紅球概率為

    6ec8aac122bd4f6e                                                                           (3分)

    ∴P(A)=6ec8aac122bd4f6e,即第四次恰好摸到紅球的概率為6ec8aac122bd4f6e。(6分)(注:無文字說明扣一分)

    (2)由題設(shè)可知ξ的所有可能取值為:ξ=0,1,2,3。P(ξ=0)=6ec8aac122bd4f6e;

    P(ξ=1)=6ec8aac122bd4f6e;P(ξ=2)=6ec8aac122bd4f6e;

    P(ξ=3)=6ec8aac122bd4f6e。故隨機變量ξ的分布列為:

    ξ

    0

    1

    2

    6ec8aac122bd4f6e3

    P

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    ∴Eξ=6ec8aac122bd4f6e(個),故Eξ=6ec8aac122bd4f6e(個)                                          (1

    20.解:(1)6ec8aac122bd4f6e,6ec8aac122bd4f6e

    故數(shù)列6ec8aac122bd4f6e是首項為2,公比為2的等比數(shù)列。

    6ec8aac122bd4f6e,6ec8aac122bd4f6e…………………………………………4分

    (2)6ec8aac122bd4f6e6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    ②―①得6ec8aac122bd4f6e,即6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    ④―③得6ec8aac122bd4f6e,即6ec8aac122bd4f6e

    所以數(shù)列6ec8aac122bd4f6e是等差數(shù)列……………………9分

    (3)6ec8aac122bd4f6e………………………………11分

    設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e

    …………13分

    21.解:(1)設(shè)6ec8aac122bd4f6e,6ec8aac122bd4f6e.

    整理得AB:bx-ay-ab=0與原點距離6ec8aac122bd4f6e,又6ec8aac122bd4f6e,

    聯(lián)立上式解得b=1,∴c=2,6ec8aac122bd4f6e.∴雙曲線方程為6ec8aac122bd4f6e.

    (2)設(shè)C(x1,y1),D(x2,y2)設(shè)CD中點M(x0,y0),

    6ec8aac122bd4f6e,∴|AC|=|AD|,∴AM⊥CD.

    聯(lián)立直線6ec8aac122bd4f6e與雙曲線的方程得6ec8aac122bd4f6e,整理得(1-3k2)x2-6kmx-3m2-3=0,且6ec8aac122bd4f6e.

    6ec8aac122bd4f6e ,    6ec8aac122bd4f6e

    6ec8aac122bd4f6e6ec8aac122bd4f6e,∴AM⊥CD.

    6ec8aac122bd4f6e,整理得6ec8aac122bd4f6e

    6ec8aac122bd4f6e且k2>0,,代入6ec8aac122bd4f6e中得6ec8aac122bd4f6e.

    6ec8aac122bd4f6e.

    22.解:(1)∵6ec8aac122bd4f6e(x)=3ax2+sinθx-2

    由題設(shè)可知:6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e∴sinθ=1。(2分)

    從而a=6ec8aac122bd4f6e,∴f(x)=6ec8aac122bd4f6e,而又由f(1)=6ec8aac122bd4f6e得,c=6ec8aac122bd4f6e

    ∴f(x)=6ec8aac122bd4f6e即為所求。                                                     (4分)

    (2)6ec8aac122bd4f6e(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均為增函數(shù),在(-2,1)上為減函數(shù)。

    (i)當(dāng)m>1時,f(x)在[m,m+3]上遞增。故f(x)max=f(m+3),f(x)min=f(m)

    由f(m+3)-f(m)=6ec8aac122bd4f6e(m+3)3+6ec8aac122bd4f6e(m+3)2-2(m+3)-6ec8aac122bd4f6e=3m2+12m+6ec8aac122bd4f6e得-5≤m≤1。這與條件矛盾故舍。                                                                        (6分)

    (ii)當(dāng)0≤m≤1時,f(x)在[m,1]上遞減,在[1,m+3]上遞增。

    ∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max

    又f(m+3)-f(m)=3m2+12m+6ec8aac122bd4f6e=3(m+2)2-6ec8aac122bd4f6e>0(0≤m≤1),∴f(x)max=f(m+3)

    ∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=6ec8aac122bd4f6e恒成立

    故當(dāng)0≤m≤1原式恒成立。                                                                        (8分)

    綜上:存在m且m∈[0,1]合乎題意。                                                     (9分)

    (3)∵a1∈(0,16ec8aac122bd4f6e,∴a26ec8aac122bd4f6e,故a2>2

    假設(shè)n=k(k≥2,k∈N*)時,ak>2。則ak+1=f(ak)>f(2)=8>2

    故對于一切n(n≥2,n∈N*)均有an>2成立。                                        (11分)

    令g(x)=6ec8aac122bd4f6e

    6ec8aac122bd4f6e=6ec8aac122bd4f6e

    當(dāng)x∈(0,2)時6ec8aac122bd4f6e(x)<0,x∈(2,+∞)時,6ec8aac122bd4f6e(x)>0,

    ∴g(x)在x∈[2,+∞6ec8aac122bd4f6e時為增函數(shù)。

    而g(2)=8-8ln2>0,即當(dāng)x∈[2,+∞6ec8aac122bd4f6e時,g(x)≥g(2)>0恒成立。

    ∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。

    而當(dāng)n=1時,a2=8,而8lna1≤0,∴a2>8lna1顯然成立。

    綜上:對一切n∈N*均有an+1>8lnan成立。                                 

     

     

     

     

    本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


    同步練習(xí)冊答案