(II)若數(shù)列 查看更多

 

題目列表(包括答案和解析)

(2009四川卷文)設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。                                       
(I)求數(shù)列與數(shù)列的通項(xiàng)公式;
(II)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個(gè)正整數(shù);若不存在,請(qǐng)說(shuō)明理由;
(III)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有

查看答案和解析>>

(09年崇文區(qū)二模理)(13分)

        設(shè)M是由滿(mǎn)足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;

②函數(shù)的導(dǎo)數(shù)滿(mǎn)足

   (I)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;

   (II)集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意[m,n],都存在,使得等式成立。試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;

   (III)設(shè)x1是方程的實(shí)數(shù)根,求證:對(duì)于定義域中任意的x2,x3,當(dāng)時(shí),有

查看答案和解析>>

(2006•崇文區(qū)一模)已知數(shù)列{an}滿(mǎn)足3Sn=(n+2)an(n∈N*),其中Sn為其前n項(xiàng)的和,a1=2
(I)證明:數(shù)列{an}的通項(xiàng)公式為an=n(n+1);
(II)求數(shù)列{
1
an
}
的前n項(xiàng)和Tn
(III)是否存在無(wú)限集合M,使得當(dāng)n∈M時(shí),總有|Tn-1|<
1
10
成立,若存在,請(qǐng)找出一個(gè)這樣的集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2006•崇文區(qū)一模)已知數(shù)列{an}滿(mǎn)足
an
an-1
=
n+1
n-1
(n∈N*,n>1)
,a1=2
(I)求證:數(shù)列{an}的通項(xiàng)公式為an=n(n+1)
(II)求數(shù)列{
1
an
}
的前n項(xiàng)和Tn
(III)是否存在無(wú)限集合M,使得當(dāng)n∈M時(shí),總有|Tn-1|<
1
10
成立.若存在,請(qǐng)找出一個(gè)這樣的集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題滿(mǎn)分12分)

(理科)若,且當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍。

(文科)已知數(shù)列 {2 nan} 的前 n 項(xiàng)和 Sn = 9-6n.

(I) 求數(shù)列 {an} 的通項(xiàng)公式;

(II)    設(shè) bn = n·(2-log 2 ),求數(shù)列 { } 的前 n 項(xiàng)和Tn

 

查看答案和解析>>

 

 

一、選擇題:(1)-(12)CAADB 。拢粒粒茫摹 。茫

二、填空題:(13)  (14)  (15)  (16)

三、解答題:

(17)解:(1)                                   …………6分

(2)                 …………8分

 時(shí),

當(dāng)時(shí),

當(dāng)時(shí),……11分

綜上所述:………………12分

(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨(dú)立的,所以恰好有兩家煤礦必須整改的概率是

                   ………………4分

(2)由題設(shè),必須整改的煤礦數(shù)服從二項(xiàng)分布,從而的數(shù)學(xué)期望是

,即平均有2.50家煤礦必須整改.       ………………8分

(3)某煤礦被關(guān)閉,即煤礦第一次安檢不合格,整改后復(fù)查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9,由題意,每家煤礦是否關(guān)閉是相互獨(dú)立的,所以5家煤礦都不被關(guān)閉的概率是

從而至少關(guān)閉一家煤礦的概率是          ………………12分

(19)證明:由多面體的三視圖知,四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)面是等腰三角形,

且平面平面.……2分

(1)      學(xué)科網(wǎng)(Zxxk.Com)連結(jié),則的中點(diǎn),

在△中,,………4分

   且平面,平面,

 ∴∥平面  ………6分

(2) 因?yàn)槠矫?sub>⊥平面

平面∩平面,

 又,所以,⊥平面,

…………8分

,,所以△

等腰直角三角形,

,即………………10分

 又, ∴ 平面

平面,

所以  平面⊥平面  ………………12分

(20)解:設(shè)

              ………………6分

(2)由題意得上恒成立。

在[-1,1]上恒成立。

設(shè)其圖象的對(duì)稱(chēng)軸為直線(xiàn),所以上遞減,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,數(shù)列                        …………6分

   (II)由得:

                                                                                

     …………(1)                             

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直線(xiàn)相切,

   ∴    …………3分

∵橢圓C1的方程是     ………………6分

(Ⅱ)∵M(jìn)P=MF2

∴動(dòng)點(diǎn)M到定直線(xiàn)的距離等于它到定點(diǎn)F1(1,0)的距離,

∴動(dòng)點(diǎn)M的軌跡是C為l1準(zhǔn)線(xiàn),F(xiàn)2為焦點(diǎn)的拋物線(xiàn)  ………………6分

∴點(diǎn)M的軌跡C2的方程為    …………9分

(Ⅲ)Q(0,0),設(shè) 

 

,化簡(jiǎn)得

    ………………11分

當(dāng)且僅當(dāng) 時(shí)等號(hào)成立   …………13分

∴當(dāng)的取值范圍是

……14分

 

 


同步練習(xí)冊(cè)答案