19.如圖.在□PBCD中 .AB⊥PD于A.PA=4.AB=.BC=6.將△PAB沿AB折起.使PA⊥BC. (1)求證:BD⊥平面PAC, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

    如圖,在中,P為AB邊上的一動點,PD//BC交AC于點D,現(xiàn)將PDA沿PD翻折至PDA,使平面PDA平面PBCD。

   (1)當(dāng)棱錐的體積最大時,求PA的長;

   (2)若點P為AB的中點,E為的中點,求證:。

 

查看答案和解析>>

 

一、選擇題(本大題共12個小題,每小題5分,共60分)

    1―5  BCBAB    6―10  CDBDD   11―12AB

20090323

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解:設(shè)“通過第一關(guān)”為事件A1,“補過且通過第一關(guān)”為事件A2,“通過第二關(guān)”為事件B1,“補過且通過第二關(guān)”為事件B2。             (2分)

   (1)不需要補過就可獲得獎品的事件為A=A1?B1,又A1與B1相互獨立,則P(A)=P

(A1?B1)=P(A1)?P(B1)=。故他不需要補過就可獲得獎品的概率為。

(6分)

   (2)由已知得ξ=2,3,4,注意到各事件之間的獨立性與互斥性,可得

       

19.解法:1:(1)

   (2)過E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

由Rt△EFC∽

    <dd id="jtfuq"><fieldset id="jtfuq"><em id="jtfuq"></em></fieldset></dd>
    1. <delect id="jtfuq"></delect>

      <nobr id="jtfuq"><small id="jtfuq"></small></nobr>

      解法2:(1)

         (2)設(shè)平面PCD的法向量為

              則

                 解得   

      AC的法向量取為

       角A―PC―D的大小為

      20.(1)由已知得    

        是以a2為首項,以

          (6分)

         (2)證明:

         

      21:解(1)由線方程x+2y+10-6ln2=0知,

          直線斜率為

        

          所以   解得a=4,b=3。    (6分)

         (2)由(1)得

      22.解:(1)設(shè)直線l的方程為

      因為直線l與橢圓交點在y軸右側(cè),

      所以  解得2

      l直線y截距的取值范圍為。          (4分)

         (2)①(Ⅰ)當(dāng)AB所在的直線斜率存在且不為零時,

      設(shè)AB所在直線方程為

      解方程組           得

      所以

      設(shè)

      所以

      因為l是AB的垂直平分線,所以直線l的方程為

       

      因此

       又

         (Ⅱ)當(dāng)k=0或不存在時,上式仍然成立。

      綜上所述,M的軌跡方程為(λ≠0)。  (9分)

      ②當(dāng)k存在且k≠0時,由(1)得

        解得

      所以

      解法:(1)由于

      當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時等號成立,

      此時,

       

      當(dāng)

      當(dāng)k不存在時,

      綜上所述,                      (14分)

      解法(2):

      因為

      當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時等號成立,

      此時。

      當(dāng)

      當(dāng)k不存在時,

      綜上所述,

       

       

       

       


      同步練習(xí)冊答案