21.已知數(shù)列{an}滿足 ...為正數(shù) . 查看更多

 

題目列表(包括答案和解析)

(本題滿分16分)

已知數(shù)列{an}滿足Sn+an=2n+1, 

(1) 寫出a1, a2, a3,并推測an的表達式;

(2) 用數(shù)學歸納法證明所得的結論。

 

查看答案和解析>>

(本題滿分16分)
已知數(shù)列{an}滿足Sn+an=2n+1, 
(1) 寫出a1, a2, a3,并推測an的表達式;
(2) 用數(shù)學歸納法證明所得的結論。

查看答案和解析>>

.(本題滿分16分)
已知各項均不為零的數(shù)列{an}的前n項和為Sn,且滿足a1=c,2Sn=anan+1+r.
(1)若r=-6,數(shù)列{an}能否成為等差數(shù)列?若能,求滿足的條件;若不能,請說明理由.
(2)設,
若r>c>4,求證:對于一切n∈N*,不等式恒成立.

查看答案和解析>>

.(本題滿分16分)

    已知各項均不為零的數(shù)列{an}的前n項和為Sn,且滿足a1=c,2Sn=anan+1+r.

   (1)若r=-6,數(shù)列{an}能否成為等差數(shù)列?若能,求滿足的條件;若不能,請說明理由.

   (2)設,,

        若r>c>4,求證:對于一切n∈N*,不等式恒成立.

 

查看答案和解析>>

.(本題滿分16分)
已知各項均不為零的數(shù)列{an}的前n項和為Sn,且滿足a1=c,2Sn=anan+1+r.
(1)若r=-6,數(shù)列{an}能否成為等差數(shù)列?若能,求滿足的條件;若不能,請說明理由.
(2)設,
若r>c>4,求證:對于一切n∈N*,不等式恒成立.

查看答案和解析>>

一、選擇題:(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

D

D

A

B

C

C

D

二、填空題:(每小題5分,共30分)

11. ; 12. ;  13. ; 14. 2或;  15. ;  16.  9.

三、解答題:(5大題,共70分)

17.(1)由,得------------3分

為銳角,, -------5分

                                   --------------------------6分

(2) ---8分

,得,       --------------------------10分

          --------------------------12分

(若通過得出,求出,

未舍去,得兩解,扣2分.)

18.(1)設點,由,,

,得,         ------------------------4分

.                              ---------------------6分

(2)由(1)知為拋物線的焦點,為過焦點的直線與的兩個交點.

①當直線斜率不存在時,得,,.      ----8分

②當直線斜率存在且不為0時,設,代入

.設,

,得,    ----12分

(或

,此時,由

。                                 ---------------14分

19.解法一:

(1)在中,,,

,取中點

, ,

中,,又均為銳角,∴,                             ---------------2分

,又外, .      ---------------4分

(2)∵平面平面,∴,過,連結,則,

為二面角的平面角,               ------------------------6分

易知=,∴,

二面角的大小為.          ------------------------9分

(其它等價答案給同樣的得分)

(3)點到平面的距離,就是到平面的距離,-------------------------------11分

,則,的長度即為所求, 由上 (或用等體積求)----------------------------------14分

解法二:

如圖,建立圖示空間直角坐標系.

,,,.

(1)

(2)利用,其中分別為兩個半平面的法向量,

或利用求解.

    (3)利用,其中為平面的法向量。

20.(1),∴    ①

,∴,即    ②

由①②得.又時,①、②不成立,故.------2分

,設x1、x2是函數(shù)的兩個極值點,則x1、x2是方程=0的兩個根,,

x1+x2=,又∵ A、O、B三點共線, =

=0,又∵x1x2,∴b= x1+x2=,∴b=0. ----------------6分

(2)時,,                          -----------------------7分

,可知上單調遞增,在

上單調遞減, .  ---------------------9分

①由的值為1或2.(∵為正整數(shù))   -----------------11分

時,記上切線斜率為2的切點的橫坐標為,

則由,依題意得,

矛盾.

(或構造函數(shù)上恒正)

綜上,所求的值為1或2.                           -----------------------14分

21.(1)∵為正數(shù),  ①,=1,∴>0(n∈N*),……… 1分

  又 ②,①―②兩式相減得

  ∴同號,                            ---------------------4分

  ∴對n∈N*恒成立的充要條件是>0.         ---------------------7分

  由=>0,得>7 .                        ---------------------8分

 

 

(2)證法1:假設存在,使得對任意正整數(shù)都有 .

,則>17 .                                   --------------------9分

另一方面,==,---------11分

,,……,,

,∴=, ①

--------------------------------14分

當m>16時,由①知,,不可能使對任意正整數(shù)n恒成立,

--------------------------------15分

∴m≤16,這與>17矛盾,故不存在m,使得對任意正整數(shù)n都有 .

--------------------------------16分

(2)證法2:假設存在m,使得對任意正整數(shù)n都有 .

,則>17 .                                 --------------------9分

另一方面,,       ------------------11分

,,……,,

,           ①            -----------------14分

當m>16時,由①知,,不可能使對任意正整數(shù)恒成立,

--------------------------15分

∴m≤16,這與>17矛盾,故不存在m,使得對任意正整數(shù)n都有 。                               -----------------------------16分

 


同步練習冊答案