題目列表(包括答案和解析)
(本小題滿分14分)
.已知中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)為(0 ,),且過點(diǎn),過A作傾斜角互補(bǔ)的兩條直線,它們與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B和點(diǎn)C。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求證:直線BC的斜率為定值,并求這個(gè)定值。
(3)求三角形ABC面積的最大值。
(本小題滿分14分)
已知直線l與橢圓(a>b>0)相交于不同兩點(diǎn)A、B,,且,以M為焦點(diǎn),以橢圓的右準(zhǔn)線為相應(yīng)準(zhǔn)線的雙曲線與直線l相交于N(4,1). (I)求橢圓的離心率; (II)設(shè)雙曲線的離心率為,記,求的解析式,并求其定義域和值域.
(本小題滿分14分)已知定義在上的函數(shù),滿足條件:①,②對(duì)非零實(shí)數(shù),都有.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),直線分別與函數(shù),交于、兩點(diǎn),(其中);設(shè),為數(shù)列的前項(xiàng)和,求證:當(dāng)時(shí), .
(本小題滿分14分)在平面直角坐標(biāo)系中,已知直線被圓截得的弦長為.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)圓和軸相交于A,B兩點(diǎn),點(diǎn)P為圓上不同于A,B的任意一點(diǎn),直線,交軸于M,N兩點(diǎn).當(dāng)點(diǎn)P變化時(shí),以為直徑的圓是否經(jīng)過圓內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.
(本小題滿分14分)
已知曲線上任意一點(diǎn)到兩個(gè)定點(diǎn)和的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過的直線與曲線交于、兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的方程.
(執(zhí)信中學(xué)、中山紀(jì)念中學(xué)、深圳外語)三校聯(lián)考 09.02
一.選擇題:
二.填空題:9.1; 10.15; 11.
13.; 14.; 15..
三.解答題:
16.(1)== 2分
== 4分
6分
(2)==
== 9分
由,得 10分
11分
當(dāng), 即時(shí), 12分
17.(1)由已知,的取值為 . 2分
, ,
, 8分
7
8
9
10
的分布列為:
9分
(2) 11分
12分
18.(1)由.且得 2分
, 4分
在中,令得當(dāng)時(shí),T=,
兩式相減得, 6分
. 8分
(2), 9分
,, 10分
=2
=, 13分
14分
19、(Ⅰ)在梯形中,,
四邊形是等腰梯形,
且
2分
又平面平面,交線為,
平面 4分
(Ⅱ)解法一、當(dāng)時(shí),平面, 5分
在梯形中,設(shè),連接,則 6分
,而, 7分
,四邊形是平行四邊形, 8分
又平面,平面平面 9分
解法二:當(dāng)時(shí),平面,
由(Ⅰ)知,以點(diǎn)為原點(diǎn),所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系, 5分
則,,,,
,
平面,
平面與、共面,
|