三.解答題:本大題共6小題,滿分80分.解答需寫出文字說明,證明過程或演算步驟. 查看更多

 

題目列表(包括答案和解析)

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
已知函數(shù)
(1)求的值;               (2)若,求的值.

查看答案和解析>>

三、解答題:本大題共6小題,共80分.
15.(本小題滿分13分)
已知函數(shù)
(Ⅰ)求的定義域與最小正周期;
(Ⅱ)設,若的大。

查看答案和解析>>

三、解答題:本大題共6小題,共80分.

15.(本小題滿分13分)

已知函數(shù),

(Ⅰ)求的定義域與最小正周期;

(Ⅱ)設,若的大。

 

查看答案和解析>>

三、解答題:本大題共6小題,共80分.
15.(本小題滿分13分)
已知函數(shù)
(Ⅰ)求的定義域與最小正周期;
(Ⅱ)設,若的大。

查看答案和解析>>

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)[來源:學§科§網]

已知函數(shù)                                          的最大值是2,其圖象經過點

(1)求的解析式;

(2)已知,且,

的值.

 

 

查看答案和解析>>

             (執(zhí)信中學、中山紀念中學、深圳外語)三校聯(lián)考      09.02

一.選擇題:

二.填空題:9.1;            10.15;          11.      

學科網(Zxxk.Com)

13.;          14.;          15..

 

 

 

 

 

 

 

 

 

 

 

 

三.解答題:

16.(1)==                2分

==                           4分

                     6分         

(2)==

==               9分

,得                10分

               11分

, 即時,                  12分

 

17.(1)由已知,的取值為 .                     2分                 

,

                     8分

7

8

9

10

的分布列為:

 

 

 

                                                          9分

 

(2)    11分      

        12分

18.(1)由.且           2分

,                      4分

中,令時,T=,

兩式相減得,      6分

.                   8分

(2),                        9分

,,       10分

=2

=,               13分

                 14分     

19、(Ⅰ)在梯形中,,

學科網(Zxxk.Com)四邊形是等腰梯形,

     2分

平面平面,交線為,

平面              4分

(Ⅱ)解法一、當時,平面,      5分

在梯形中,設,連接,則          6分

,而,             7分

,四邊形是平行四邊形,             8分

平面,平面平面          9分

解法二:當時,平面,                                  

由(Ⅰ)知,以點為原點,所在直線為坐標軸,建立空間直角坐標系,    5分

學科網(Zxxk.Com),,

,

平面

平面、共面,

 

 

.

,,                     6分

從而要使得:成立,

,解得                  8分

時,平面                 9分

學科網(Zxxk.Com)(Ⅲ)解法一、取中點,中點,連結,,

平面

,,又

是二面角的平面角.        6分

中,

,.           7分

.               8分

中,由余弦定理得,               9分

即二面角的平面角的余弦值為.

學科網(Zxxk.Com)

 

建立空間直角坐標系,則,,,

,,,

垂足為. 令,

,  

得,,,即   11分

,

二面角的大小就是向量與向量所夾的角.          12分

        13分        

               

即二面角的平面角的余弦值為.                    14分

 

20.(1)設 (均不為),

,即                   2分

,即                  2分

 得  

動點的軌跡的方程為              6分

(2)①由(1)得的軌跡的方程為,,

設直線的方程為,將其與的方程聯(lián)立,消去.         8分

的坐標分別為,則,           9分

      10分

②解法一:,  即

  又 .     可得        11分

故三角形的面積,                 12分

因為恒成立,所以只要解. 即可解得.      14分

 

解法二:,(注意到

又由①有,,

三角形的面積(以下解法同解法一)

 

21.(1)函數(shù)的定義域為.               1分

;   2分                    

,       3分

則增區(qū)間為,減區(qū)間為.                        4分

(2)令,由(1)知上遞減,在上遞增,   6分

,且,           8分

時, 的最大值為,故時,不等式恒成立.   9分

(3)方程.記,則

.由;由.

所以上遞減;在上遞增.

,       10分

所以,當時,方程無解;

時,方程有一個解;

時,方程有兩個解;

時,方程有一個解;

時,方程無解.                                      13分

綜上所述,時,方程無解;

時,方程有唯一解;

時,方程有兩個不等的解.               14分

 

 


同步練習冊答案