題目列表(包括答案和解析)
(本小題8分)某中學擬組織九年級師生去泰山舉行畢業(yè)聯(lián)歡活動.下面是年級組長李老師和小芳、小明同學有關(guān)租車問題的對話:
李老師:“平安客運公司有座和座兩種型號的客車可供租用,座客車每輛每天的租金比座的貴元.”
小芳:“我們學校八年級師生昨天在這個客運公司租了輛座和輛座的客車到泰山參觀,一天的租金共計元.”
小明:“我們九年級師生租用輛座和輛45座的客車正好坐滿.”
根據(jù)以上對話,解答下列問題:
(1)平安客運公司座和座的客車每輛每天的租金分別是多少元?
(2)按小明提出的租車方案,九年級師生到該公司租車一天,共需租金多少元?
(本小題8分)某中學擬組織九年級師生去泰山舉行畢業(yè)聯(lián)歡活動.下面是年級組長李老師和小芳、小明同學有關(guān)租車問題的對話:
李老師:“平安客運公司有座和座兩種型號的客車可供租用,座客車每輛每天的租金比座的貴元.”
小芳:“我們學校八年級師生昨天在這個客運公司租了輛座和輛座的客車到泰山參觀,一天的租金共計元.”
小明:“我們九年級師生租用輛座和輛45座的客車正好坐滿.”
根據(jù)以上對話,解答下列問題:
(1)平安客運公司座和座的客車每輛每天的租金分別是多少元?
(2)按小明提出的租車方案,九年級師生到該公司租車一天,共需租金多少元?
選擇題
1-5. CDCBA 6-8. BDC
填空題
9. -2 ; 10. ; 11. 7 ; 12. (不唯一) .
解答題
13. 解:原式= -------------------------------------------------------------4分
= -----------------------------------------------------------------------------5分
14. 解: 不等式 的解集是 -----------------------------------------1分
不等式 的解集是 -------------------------------------------------2分
所以,此不等式組的解集是 ---------------------------------------------4分
整數(shù)解為 ?2 ,?1 , 0 ,1 . --------------------------------------------5分
15. 解: 由題意,得 , ∴
∴ 反比例函數(shù)的解析式為 ----------------------------------------------------2分
∵ 點在反比例函數(shù)圖象上
∴ ---------------------------------------------------------------------------------3分
又∵ 一次函數(shù)的圖象過點 、
∴ -----------------------------------------------------------------------------4分
∴ 所以一次函數(shù)的解析式為 -----------------------------5分
16. 證明:在正方形ABCD中,∠DAF=∠ABE=90°, DA=AB. ------------------------1分
∵DG⊥AE,
∴∠FDA +∠DAG=90°. --------------------------------------------------------------2分
又∵∠EAB+∠DAG=90°,
∴∠FDA =∠EAB. -----------------------------------------------------------------------3分
∴△DAF≌△ABE, ----------------------------------------------------------------------4分
∴DF=AE. ------------------------------------------------------------------------------5分
17. 解:
∵
∴ ---------------------------------------------------------------------------------2分
∴ -----5分
18. 解:
(1)過點D作DE⊥OB于E,過點C作CF⊥OB于F.
∵四邊形OBCD是等腰梯形,OD=BC ,
∴ Rt△ODE≌Rt△BCF ,四邊形CDEF是矩形.
∴ OE=BF , DC=EF .----------------------------------------------------------------------------1分
∵ OD=BC=2, OB=5, ∠BOD=60°,
∴ OE=BF=1 , DC=EF=3.
∴ 梯形OBCD的周長是12 --------------------------------------------------------------------2分
(2) 設(shè)點M的坐標為 ,聯(lián)結(jié)DM和CM.
∵ ∠BOD=∠COD=∠OBC=60°
∴ ∠ODM+∠OMD=∠BMC+∠OMD=120°
∴ ∠ODM=∠BMC --------------------------------------------------------------------------------3分
∵ △OMD∽△BCM
∴
∴ --------------------------------------------------------------------------------------4分
∴
∴ 點M的坐標為(1, 0) 或(4,0) ----------------------------------------------------------------5分
19. 解:(1) 聯(lián)結(jié)OC. ∵ PC為⊙O的切線 ,
∴ PC⊥OC .
∴ ∠PCO=90°. ----------------------------------------------------------------------1分
∵ ∠ACP=120°
∴ ∠ACO=30°
∵ OC=OA ,
∴ ∠A=∠ACO=30°.
∴ ∠BOC=60°--------------------------------------------------------------------------2分
∵ OC=4
∴
∴ -------------------------------------------3分
(2) ∠CMP的大小不變,∠CMP=45° --------------------------------------------------4分
由(1)知 ∠BOC+∠OPC=90°
∵ PM平分∠APC
∴ ∠APM=∠APC
∵ ∠A=∠BOC
∴ ∠PMC=∠A+∠APM=(∠BOC+∠OPC)= 45°---------------------------5分
20. 解:(1)21 -------------------------------------- 1分
(2)一班眾數(shù)為90,二班中位數(shù)為80?????????????????????????????????????????????????????????????????????????? 3分
(3)①從平均數(shù)的角度看兩班成績一樣,從中位數(shù)的角度看一班比二班的成績好,所以一班成績好; 4分
②從平均數(shù)的角度看兩班成績一樣,從眾數(shù)的角度看二班比一班的成績好,所以二班成績好; 5分
③從級以上(包括級)的人數(shù)的角度看,一班人數(shù)是18人,二班人數(shù)是12人,所以一班成績好. 6分
21.解:(1)設(shè)購進甲種商品件,乙種商品件.
根據(jù)題意,得-------------------------------------------2分
化簡,得
解之,得
答:該商場購進甲、乙兩種商品分別為200件和120件. ------------------------------------3分
(2)甲商品購進400件,獲利為(元).
從而乙商品售完獲利應不少于(元).
設(shè)乙商品每件售價為元,則.--------------------------------------------4分
解得.所以,乙種商品最低售價為每件108元.------------------------------------5分
22.(1)由題意,
要使,須,
.
,
即時,能使得.------------------------------------------------------------2分
(2)的值的大小沒有變化, 總是105°.-------------------3分
當時,總有存在.
,
又,
.
又,
.------------------------------------------------------5分
23. 解:(1) ---------------------------------------------1分
---------------------------------------------------------------------------------2分
不論取何值,方程總有兩個不相等實數(shù)根 -------------------------------------------3分
(2)由原方程可得
∴ --------------------------------------------------------------4分
∴ ---------------------------------------------------------------------------------5分
又∵
∴
∴ ---------------------------------------------------------------------------------6分
經(jīng)檢驗:符合題意.
∴ 的值為4. ----------------------------------------------------------------------7分
24. 解:(1)∵拋物線經(jīng)過點A(2,0), C(0,2),
∴ 解得
∴拋物線解析式為 ---------------------2分
(2) ∵點B(1,n) 在拋物線上
∴ -----------------------------------3分
過點B作BD⊥y軸,垂足為D.
∴BD=1 , CD=
∴ BC=2 --------------------------------------------4分
(3) 聯(lián)結(jié)OB.
在Rt△BCD中, BD=1 ,BC=2 ,
∴∠BCD=30° ----------------------------------------5分
∵ OC=BC
∴∠BOC=∠OBC
∵∠BCD=∠BOC+∠OBC
∴∠BOC=15°
∴∠BOA=75°------------------------------------------6分
過點B作BE⊥OA , 垂足為E,則OE=AE.
∴OB=AB
∴∠OAB=∠BOA=75°.-------------------------------7分
25.(1)BM=DM ,BM⊥DM --------------------------------------------------------1分
證明:在Rt△EBC中,M是斜邊EC的中點,
∴ .
∴ ∠EMB=2∠ECB.
在Rt△EDC中,M是斜邊EC的中點,
∴ .
∴ ∠EMD=2∠ECD.-------------------2分
∴ BM=DM,∠EMD+∠EMB =2(∠ECD+ECB).
∵ ∠ECD+∠ECB=∠ACB=45°,
∴ ∠BMD=2∠ACB=90°,即BM⊥DM. -------------------------------3分
(2)當△ADE繞點A逆時針旋轉(zhuǎn)小于45°的角時, (1)中的結(jié)論成立.
證明:
連結(jié)BD,延長DM至點F,使得DM=MF,連結(jié)BF、FC,延長ED交AC于點H.
-------------------------------------4分
∵ DM=MF,EM=MC,
∴ 四邊形是平行四邊形.
∴ DE∥CF ,ED =CF,
∵ ED= AD,
∴ AD=CF.
∵ DE∥CF,----------------------------------------5分
∴ ∠AHE=∠ACF.
∵ ,,
∴ ∠BAD=∠BCF. --------------------------------------------------6分
又∵AB= BC,
∴ △ABD≌△CBF.
∴ BD=BF,∠ABD=∠CBF.
∵ ∠ABD+∠DBC =∠CBF+∠DBC,
∴∠DBF=∠ABC =90°.
在Rt△中,由,,得BM=DM且BM⊥DM. -------7分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com