題目列表(包括答案和解析)
在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行了統(tǒng)計(jì),如下表:
| 幾何證明選講 | 坐標(biāo)系與 參數(shù)方程 | 不等式選講 | 合計(jì) |
男同學(xué)(人數(shù)) | 12 | 4 | 6 | 22 |
女同學(xué)(人數(shù)) | 0 | 8 | 12 | 20 |
合計(jì) | 12 | 12 | 18 | 42 |
| 幾何類 | 代數(shù)類 | 總計(jì) |
男同學(xué)(人數(shù)) | 16 | 6 | 22 |
女同學(xué)(人數(shù)) | 8 | 12 | 20 |
總計(jì) | 24 | 18 | 42 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行了統(tǒng)計(jì),如下表:
| 幾何證明選講 | 坐標(biāo)系與 參數(shù)方程 | 不等式選講 | 合計(jì) |
男同學(xué)(人數(shù)) | 12 | 4 | 6 | 22 |
女同學(xué)(人數(shù)) | 0 | 8 | 12 | 20 |
合計(jì) | 12 | 12 | 18 | 42 |
(1)在統(tǒng)計(jì)結(jié)果中,如果把幾何證明選講和坐標(biāo)系與參數(shù)方程稱為幾何類,把不等式選講稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:
| 幾何類 | 代數(shù)類 | 總計(jì) |
男同學(xué)(人數(shù)) | 16 | 6 | 22 |
女同學(xué)(人數(shù)) | 8 | 12 | 20 |
總計(jì) | 24 | 18 | 42 |
據(jù)此統(tǒng)計(jì)你是否認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān)?若有關(guān),你有多大的把握?
(2)在原統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名班級(jí)學(xué)委和兩名數(shù)學(xué)科代表都在選做“不等式選講”的同學(xué)中.
①求在這名班級(jí)學(xué)委被選中的條件下,兩名數(shù)學(xué)科代表也被選中的概率;
②記抽到數(shù)學(xué)科代表的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表僅供參考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2=
| 幾何證明選講 | 坐標(biāo)系與 參數(shù)方程 | 不等式選講 | 合計(jì) |
男同學(xué)(人數(shù)) | 12 | 4 | 6 | 22 |
女同學(xué)(人數(shù)) | 0 | 8 | 12 | 20 |
合計(jì) | 12 | 12 | 18 | 42 |
| 幾何類 | 代數(shù)類 | 總計(jì) |
男同學(xué)(人數(shù)) | 16 | 6 | 22 |
女同學(xué)(人數(shù)) | 8 | 12 | 20 |
總計(jì) | 24 | 18 | 42 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
算法的特征
(1)概括性:寫出的算法必須能夠________并且能夠重復(fù)使用.
(2)邏輯性:算法從初始步驟開始,分為若干個(gè)明確的步驟,前一步是________的前提,只有完成前一步,才能進(jìn)行下一步,而且每一步都是________,從而組成具有很強(qiáng)邏輯性的步驟序列.
(3)有窮性:一個(gè)算法必須保證在執(zhí)行了________結(jié)束.
(4)不唯一性:求解某一個(gè)問(wèn)題________只有唯一的一個(gè)算法而是可以有不同的算法.
(5)普遍性:很多具體問(wèn)題,都可以設(shè)計(jì)合理的算法去解決.
閱讀下面的文言文,完成下面5題。
李斯論 (清)姚鼐
蘇子瞻謂李斯以荀卿之學(xué)亂天下,是不然。秦之亂天下之法,無(wú)待于李斯,斯亦未嘗以其學(xué)事秦。
|
君子之仕也,進(jìn)不隱賢;小人之仕也,無(wú)論所學(xué)識(shí)非也,即有學(xué)識(shí)甚當(dāng),見(jiàn)其君國(guó)行事,悖謬無(wú)義,疾首嚬蹙于私家之居,而矜夸導(dǎo)譽(yù)于朝庭之上,知其不義而勸為之者,謂天下將諒我之無(wú)可奈何于吾君,而不吾罪也;知其將喪國(guó)家而為之者,謂當(dāng)吾身容可以免也。且夫小人雖明知世之將亂,而終不以易目前之富貴,而以富貴之謀,貽天下之亂,固有終身安享榮樂(lè),禍遺后人,而彼宴然①無(wú)與者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之誅惡人,亦有時(shí)而信也邪!
且夫人有為善而受教于人者矣,未聞為惡而必受教于人者也。荀卿述先王而頌言儒效,雖間有得失,而大體得治世之要。而蘇氏以李斯之害天下罪及于卿,不亦遠(yuǎn)乎?行其學(xué)而害秦者,商鞅也;舍其學(xué)而害秦者,李斯也。商君禁游宦,而李斯諫逐客②,其始之不同術(shù)也,而卒出于同者,豈其本志哉!宋之世,王介甫以平生所學(xué),建熙寧新法,其后章惇、曾布、張商英、蔡京之倫,曷嘗學(xué)介甫之學(xué)耶?而以介甫之政促亡宋,與李斯事頗相類。夫世言法術(shù)之學(xué)足亡人國(guó),固也。吾謂人臣善探其君之隱,一以委曲變化從世好者,其為人尤可畏哉!尤可畏哉!
[注釋]①宴然:安閑的樣子。②諫逐客:秦始皇曾發(fā)布逐客令,驅(qū)逐六國(guó)來(lái)到秦國(guó)做官的人,李斯寫了著名的《諫逐客書》,提出了反對(duì)意見(jiàn)。
對(duì)下列句子中加點(diǎn)的詞語(yǔ)的解釋,不正確的一項(xiàng)是( )
A.非是不足以中侈君張吾之寵 中:符合
B.滅三代法而尚督責(zé) 尚:崇尚
C.知其不義而勸為之者 勸:鼓勵(lì)
D.而終不以易目前之富貴 易:交換
下列各組句子中,加點(diǎn)的詞的意義和用法相同的一組是( )
A.因秦國(guó)地形便利 不如因普遇之
B.設(shè)所遭值非始皇、二世 非其身之所種則不食
C.且夫小人雖明知世之將亂 臣死且不避,卮酒安足辭
D.不亦遠(yuǎn)乎 王之好樂(lè)甚,則齊國(guó)其庶幾乎
下列各項(xiàng)中,加點(diǎn)詞語(yǔ)與現(xiàn)代漢語(yǔ)意義不相同的一項(xiàng)是( )
A.小人之仕也,無(wú)論所學(xué)識(shí)非也
B.而大體得治世之要
C.而以富貴之謀,貽天下之亂
D.一以委曲變化從世好者
下列各句中對(duì)文章的闡述,不正確的一項(xiàng)是( )
A.蘇軾認(rèn)為李斯以荀卿之學(xué)輔佐秦朝行暴政,致使天下大亂,作者則認(rèn)為李斯是完全舍棄了荀子的說(shuō)學(xué),李斯的做法只不過(guò)是追隨時(shí)勢(shì)罷了。
B.作者由論李斯事秦進(jìn)而泛論人臣事君的問(wèn)題,強(qiáng)調(diào)為臣者對(duì)于國(guó)君的“悖謬無(wú)義”之政,不應(yīng)為自身的富貴而阿附甚至助長(zhǎng)之。
C.此文主旨在于指出秦行暴政是君王自身的原因,作者所論的不可“趨時(shí)”,“中侈君張吾之寵”的道理,在今天仍有借鑒意義。
D.文章開門見(jiàn)山,擺出蘇軾的觀點(diǎn),然后通過(guò)對(duì)秦國(guó)發(fā)展歷史的分析,駁斥了蘇說(shuō)的謬論,提出了自己的見(jiàn)解。論證嚴(yán)密,逐層深入,是一篇典范的史論。
把文言文閱讀材料中畫橫線的句子翻譯成現(xiàn)代漢語(yǔ)。
(1)秦之甘于刻薄而便于嚴(yán)法久矣
譯文:
(2)謂天下將諒我之無(wú)可奈何于吾君,而不吾罪也
譯文:
(3)其始之不同術(shù)也,而卒出于同者,豈其本志哉
譯文:
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com