C.雙曲線 D.橢圓 查看更多

 

題目列表(包括答案和解析)

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
和橢圓
x2
m2
+
y2
b2
=1(m>b>0)
的離心率互為倒數(shù),那么,以a,b,m為邊長的三角形是(  )

查看答案和解析>>

雙曲線與橢圓有相同的焦點,它的一條漸近線方程為,則雙曲線的方程為                                                                 (     )

A      B.     C.     D.

 

查看答案和解析>>

雙曲線的方程為,焦距為4,它的頂點是橢圓的焦點,則雙曲線的離心率為

A.2               B.            C.1.5            D.

 

查看答案和解析>>

.橢圓 (a>b>0)離心率為,則雙曲線的離心率為 (  ★ )

A.                 B.        C.                 D.

 

查看答案和解析>>

.橢圓與雙曲線有相同的焦點,則的值是

    A.           B.1或-2       C.1或       D.1

 

查看答案和解析>>

 

一、選擇題(本大題共12個小題,每小題5分,共60分)

    1―5  CABDC   6―10  DCCBB   11―12AB

二、填空題:

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解: 記“第i個人過關”為事件Aii=1,2,3),依題意有

    。

   (1)設“恰好二人過關”為事件B,則有,

    且彼此互斥。

于是

=

   (2)設“有人過關”事件G,“無人過關”事件互相獨立,

  

19.解法:1:(1)

   (2)過E作EF⊥PC,垂足為F,連結DF。             (8分)

由Rt△EFC∽

解法2:(1)

   (2)設平面PCD的法向量為

        則

           解得   

AC的法向量取為

角A―PC―D的大小為

20.(1)由已知得    

  是以a2為首項,以

    (6分)

   (2)證明:

   

   (2)證明:由(1)知,

 

21.解:(1)

又直線

(2)由(1)知,列表如下:

x

f

+

0

0

+

fx

學科網(wǎng)(Zxxk.Com)

極大值

學科網(wǎng)(Zxxk.Com)

極小值

學科網(wǎng)(Zxxk.Com)

 

  所以,函數(shù)fx)的單調(diào)增區(qū)間是

 

22.解:(1)設直線l的方程為

因為直線l與橢圓交點在y軸右側(cè),

所以  解得2

l直線y截距的取值范圍為。          (4分)

   (2)①(Ⅰ)當AB所在的直線斜率存在且不為零時,

設AB所在直線方程為

解方程組           得

所以

所以

因為l是AB的垂直平分線,所以直線l的方程為

 

因此

   又

   (Ⅱ)當k=0或不存在時,上式仍然成立。

綜上所述,M的軌跡方程為(λ≠0)。  (9分)

②當k存在且k≠0時,由(1)得

  解得

所以

 

解法:(1)由于

當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

此時,

 

當k不存在時,

 

綜上所述,                      (14分)

解法(2):

因為

當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

此時。

當k不存在時,

綜上所述,。

 

 

 

 


同步練習冊答案