A.-1<a<2 B.-2<a<1 查看更多

 

題目列表(包括答案和解析)

若-1<a<2,-2<b<1,則a-b的取值范圍是________.

查看答案和解析>>

若-1<a<2,-2<b<1,則a-|b|的取值范圍是________.

查看答案和解析>>

若-1<a<b<1,則a-b的范圍是

[  ]

A.-2<a-b<2

B.-1<a-b<1

C.-2<a-b<0

D.-1<a-b<0

查看答案和解析>>

若-1<a<b<1,則a-b的范圍是

[  ]
A.

-2<a-b<2

B.

-1<a-b<1

C.

-2<a-b<0

D.

-1<a-b<0

查看答案和解析>>

“|-1|<2成立”是“<0成立”的(      )

(A)充要條件;                (B)必要不充分條件;

(C)充分不必要條件;          (D)既不充分也不必要條件.

查看答案和解析>>

 

一、選擇題(本大題共12個(gè)小題,每小題5分,共60分)

    1―5  CABDC   6―10  DCCBB   11―12AB

二、填空題:

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解: 記“第i個(gè)人過(guò)關(guān)”為事件Aii=1,2,3),依題意有

    。

   (1)設(shè)“恰好二人過(guò)關(guān)”為事件B,則有

    且彼此互斥。

于是

=

   (2)設(shè)“有人過(guò)關(guān)”事件G,“無(wú)人過(guò)關(guān)”事件互相獨(dú)立,

  

19.解法:1:(1)

   (2)過(guò)E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

  • <fieldset id="u7j4o"><optgroup id="u7j4o"></optgroup></fieldset>
    <bdo id="u7j4o"><small id="u7j4o"></small></bdo>
  • <bdo id="u7j4o"><small id="u7j4o"></small></bdo>
    <mark id="u7j4o"><acronym id="u7j4o"><li id="u7j4o"></li></acronym></mark>

      由Rt△EFC∽

          解法2:(1)

             (2)設(shè)平面PCD的法向量為

                  則

                     解得   

          AC的法向量取為

          角A―PC―D的大小為

          20.(1)由已知得    

            是以a2為首項(xiàng),以

              (6分)

             (2)證明:

             

             (2)證明:由(1)知,

           

          21.解:(1)

          又直線

          (2)由(1)知,列表如下:

          x

          f

          +

          0

          0

          +

          fx

          學(xué)科網(wǎng)(Zxxk.Com)

          極大值

          學(xué)科網(wǎng)(Zxxk.Com)

          極小值

          學(xué)科網(wǎng)(Zxxk.Com)

           

            所以,函數(shù)fx)的單調(diào)增區(qū)間是

           

          22.解:(1)設(shè)直線l的方程為

          因?yàn)橹本l與橢圓交點(diǎn)在y軸右側(cè),

          所以  解得2

          l直線y截距的取值范圍為。          (4分)

             (2)①(Ⅰ)當(dāng)AB所在的直線斜率存在且不為零時(shí),

          設(shè)AB所在直線方程為

          解方程組           得

          所以

          設(shè)

          所以

          因?yàn)?i>l是AB的垂直平分線,所以直線l的方程為

           

          因此

             又

             (Ⅱ)當(dāng)k=0或不存在時(shí),上式仍然成立。

          綜上所述,M的軌跡方程為(λ≠0)。  (9分)

          ②當(dāng)k存在且k≠0時(shí),由(1)得

            解得

          所以

           

          解法:(1)由于

          當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

          此時(shí),

           

          當(dāng)

          當(dāng)k不存在時(shí),

           

          綜上所述,                      (14分)

          解法(2):

          因?yàn)?sub>

          當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號(hào)成立,

          此時(shí)。

          當(dāng)

          當(dāng)k不存在時(shí),

          綜上所述,。

           

           

           

           


          同步練習(xí)冊(cè)答案