(A) (B) (C) (D)或 查看更多

 

題目列表(包括答案和解析)

(A)(不等式選做題)
若關(guān)于x的不等式|a|≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(幾何證明選做題)
如圖,A,E是半圓周上的兩個三等分點,直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點F,則AF的長為
2
3
3
2
3
3

(C)(坐標系與參數(shù)方程選做題) 
在已知極坐標系中,已知圓ρ=2cosθ與直線 3ρcosθ+4ρsinθ+a=0相切,則實數(shù)a=
2或-8
2或-8

查看答案和解析>>

直線的傾斜角的大小為(    )

(A)     (B)      (C)     (D)

 

查看答案和解析>>

(易向量的概念)下列命題中,正確的是( 。
A、若a∥b,則a與b的方向相同或相反B、若a∥b,b∥c,則a∥cC、若兩個單位向量互相平行,則這兩個單位向量相等D、若a=b,b=c,則a=c

查看答案和解析>>

(文科)實數(shù)x滿足|x2-x-2|+|
1
x
|=|(x2-x-2)+
1
x
|
,則x的范圍為( 。
A、{x|x<2或x<-1}
B、{x|0<x.<2或x<-1}
C、{x|-1≤x≤0或x≥2}
D、{x|-1≤x<0或x≥2}

查看答案和解析>>

1、A,B為球面上相異兩點,則通過A,B所作的大圓個數(shù)為( 。

查看答案和解析>>

一.選擇題 (本大題共10小題,每題5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.B;    7.B;    8.B;    9.D;     10.B;

二.填空題 (本大題共7小題,每題4分,共28分)

11.;  12.; ;   14.,;  15.;  16.;  17.

三.解答題 (本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.解:(1)因為,所以,得…………3分

    又因為…………………………………3分

(2)由,得,…………………………………2分

    所以,…………………………………2分

    ,…………………………………2分

    ………………………………2分

19.如圖建立空間直角坐標系,                  

 則,,

……………………1分

    (1),………………1分

        ,……………………1分

        ……………………1分

      ∴……2分

     又相交,所以平面……1分

(2)設(shè)平面的一個法向量為

因為,所以可取…………………………………………………2分

又平面的一個法向量為……………………………………………2分

  …………………………2分

∴二面角的大小為……………………………………………1分

20.解:(1)拋一次骰子面朝下的點數(shù)有l(wèi)、2、3、4四種情況,

而點數(shù)大于2的有2種,故闖第一關(guān)成功的概率……………………2分

(2)記事件“拋擲次骰子,各次面朝下的點數(shù)之和大于”為事件,

,

拋二次骰子面朝下的點數(shù)和

情況如右圖所示,

…………………………………………2分

拋三次骰子面朝下的點數(shù)依次記為:,,

考慮的情況

時,有1種,時,有3種

時,有6種,時,有10種

……………………………4分

由題意知可取0、1、2、3,

,………………………1分

,………………………1分

,………………………1分

,………………………1分

的分布列為:

 

 

 

   ……………………2分

21.(1)法一:由已知………………………………1分

    設(shè),則,……………………………1分

    ,………………………1分

    由得,,

解得………………………2分

法二:記A點到準線距離為,直線的傾斜角為

由拋物線的定義知,………………………2分

,

………………………3分

(2)設(shè),

,………………………1分

首先由

,同理……………………2分

,…………………………2分

即:,

    ∴,…………………………2分

,得

得,

的取值范圍為…………………………3分

22.(1)時,,

,,………………………2分

所以切線方程為………………………2分

(2)1°當時,,則

,

再令,

,∴上遞減,

∴當時,,

,所以上遞增,,

所以……………………5分

時,,則

由1°知當,上遞增

時,,

所以上遞增,∴

;………………………5分

由1°及2°得:………………………1分

 

 

命題人

呂峰波(嘉興)、 王書朝(嘉善)、 王云林(平湖)

胡水林(海鹽)、 顧貫石(海寧)、  張曉東(桐鄉(xiāng))

     吳明華、張啟源、徐連根、洗順良、李富強、吳林華

 


同步練習冊答案