題目列表(包括答案和解析)
(07年廣東卷) (14分)在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切于坐標(biāo)原點(diǎn).橢圓與圓的一個交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.
(1)求圓的方程;
(2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于線段的長.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(本小題滿分14分)
在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切
于坐標(biāo)原點(diǎn).橢圓與圓的一個交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.
(1)求圓的方程;
(2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于
線段的長.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(本小題滿分14分)
在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切
于坐標(biāo)原點(diǎn).橢圓與圓的一個交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為.
(1)求圓的方程;
(2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于
線段的長.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(本小題滿分14分)
在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切于坐標(biāo)原點(diǎn).橢圓E:與圓的一個交點(diǎn)到橢圓E的兩焦點(diǎn)的距離之和為.
(Ⅰ)求圓和橢圓E的方程;
(Ⅱ)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于線段的長.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(本小題滿分14分)
如圖一,平面四邊形關(guān)于直線對稱,.
把沿折起(如圖二),使二面角的余弦值等于.對于圖二,完成以下各小題:
(1)求兩點(diǎn)間的距離;
(2)證明:平面;
(3)求直線與平面所成角的正弦值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com