(Ⅱ)由不等式.得 . 查看更多

 

題目列表(包括答案和解析)

閱讀不等式5x≥4x+1的解法:
解:由5x≥4x+1,兩邊同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,顯然函數(shù)f(x)=(
4
5
x+(
1
5
x在R上為單調(diào)減函數(shù),
f(1)=
4
5
+
1
5
=1
,故當(dāng)x>1時,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集為{x|x≥1}.
利用解此不等式的方法解決以下問題:
(1)解不等式:9x>5x+4x;
(2)證明:方程5x+12x=13x有唯一解,并求出該解.

查看答案和解析>>

(2009江蘇卷)(本小題滿分16分)

按照某學(xué)者的理論,假設(shè)一個人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價為元,則他的滿意度為;如果他買進該產(chǎn)品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為,則他對這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為

(1)求關(guān)于的表達式;當(dāng)時,求證:=;

(2)設(shè),當(dāng)、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?

(3)記(2)中最大的綜合滿意度為,試問能否適當(dāng)選取、的值,使得同時成立,但等號不同時成立?試說明理由。

查看答案和解析>>

(本題16分)

   已知公差不為0的等差數(shù)列{}的前4項的和為20,且成等比數(shù)列;

(1)求數(shù)列{}通項公式;(2)設(shè),求數(shù)列{}的前n項的和

(3)在第(2)問的基礎(chǔ)上,是否存在使得成立?若存在,求出所有解;若不存在,請說明理由.

 

查看答案和解析>>

由于工業(yè)化城鎮(zhèn)化的推進,大氣污染日益加重,空氣質(zhì)量逐步惡化,霧霾天氣頻率增大,大氣污染可引起心悸、胸悶等心臟病癥狀.為了解某市患心臟病是否與性別有關(guān),在某醫(yī)院心血管科隨機的對入院50位進行調(diào)查得到了如下列聯(lián)表:問有多大的把握認為是否患心臟病與性別有關(guān). 答:.

A.95% B.99%C.99.5% D.99.9%
 
患心臟病
不患心臟病
合計

20
5
25

10
15
25
合計
30
20
50
 
參考臨界值表:

0.15
0.10
0.05
0.025
0.010
0.005
0.001
K
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式: 其中n =" a" + b + c + d).

查看答案和解析>>

設(shè)數(shù)學(xué)公式
(Ⅰ)判斷函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實數(shù)a,使得關(guān)于x的不等式ln(1+x)<ax在(0,+∞)上恒成立,若存在,求出a的取值范圍,若不存在,試說明理由;
(Ⅲ)求證:數(shù)學(xué)公式(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>


同步練習(xí)冊答案