與聯(lián)立消元得:----------7分 查看更多

 

題目列表(包括答案和解析)

已知直線某學(xué)生做如下變形,由直線與雙曲線聯(lián)立消y得形如的方程,當(dāng)A=0時(shí)該方程有一解;當(dāng)A≠0時(shí),恒成立,若該生計(jì)算過(guò)程正確,則實(shí)數(shù)m的取值范圍是            .

查看答案和解析>>

設(shè)橢圓 )的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說(shuō)明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線斜率存在時(shí),設(shè)存在直線,且.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>

如圖,直線與拋物線交于兩點(diǎn),與軸相交于點(diǎn),且.

(1)求證:點(diǎn)的坐標(biāo)為;

(2)求證:;

(3)求的面積的最小值.

【解析】設(shè)出點(diǎn)M的坐標(biāo),并把過(guò)點(diǎn)M的方程設(shè)出來(lái).為避免對(duì)斜率不存在的情況進(jìn)行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.

(2)在第(1)問(wèn)的基礎(chǔ)上,證明:即可.

(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.

 

查看答案和解析>>

過(guò)拋物線的對(duì)稱(chēng)軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

 (2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之

設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

 

查看答案和解析>>

設(shè)雙曲線的兩個(gè)焦點(diǎn)分別為、,離心率為2.

(1)求雙曲線的漸近線方程;

(2)過(guò)點(diǎn)能否作出直線,使與雙曲線交于、兩點(diǎn),且,若存在,求出直線方程,若不存在,說(shuō)明理由.

【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線等于右側(cè)的1為0,解此方程可得雙曲線的漸近線方程.

(2)設(shè)直線l的方程為,然后直線方程與雙曲線方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示此條件,得到關(guān)于k的方程,解出k的值,然后驗(yàn)證判別式是否大于零即可.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案