(Ⅱ)解:過作交于,連接, 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,拋物線y=
1
18
x2-
4
9
x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標(biāo)和拋物線的頂點坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)t∈(0,
9
4
)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系xoy中,拋物線y=x2-x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標(biāo)和拋物線的頂點坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
精英家教網(wǎng)
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網(wǎng)
(1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側(cè)面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個平面,交側(cè)面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1

(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

(1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
①∵_(dá)_____
∴EG⊥側(cè)面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵_(dá)_____
∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個平面,交側(cè)面AC1于FG.
③∵_(dá)_____
∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵_(dá)_____
∴FG∥AA1,△AA1C∽△FGC,
⑤∵_(dá)_____
,即

查看答案和解析>>


同步練習(xí)冊答案