8.設數(shù)列的前項和則 查看更多

 

題目列表(包括答案和解析)

設數(shù)列的前項和為), 關(guān)于數(shù)列有下列三個命題:

①若,則既是等差數(shù)列又是等比數(shù)列;

②若,則是等差數(shù)列;

③若,則是等比數(shù)列。

這些命題中,真命題的序號是___________ .

 

查看答案和解析>>

設數(shù)列的前項和為), 關(guān)于數(shù)列有下列三個命題:
①若,則既是等差數(shù)列又是等比數(shù)列;
②若,則是等差數(shù)列;
③若,則是等比數(shù)列。
這些命題中,真命題的序號是___________ .

查看答案和解析>>

設數(shù)列的前項和為), 關(guān)于數(shù)列有下列三個命題:
①若,則既是等差數(shù)列又是等比數(shù)列;
②若,則是等差數(shù)列;
③若,則是等比數(shù)列。
這些命題中,真命題的序號是___________ .

查看答案和解析>>

9. 設數(shù)列的前項和為). 關(guān)于數(shù)列有下列三個命題:

(1)若既是等差數(shù)列又是等比數(shù)列,則

(2)若,則是等差數(shù)列;

(3)若,則是等比數(shù)列.

   這些命題中,真命題的序號是                .

查看答案和解析>>

設數(shù)列的前項和為,且滿足.

(1)求數(shù)列的通項公式;

(2)在數(shù)列的每兩項之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:兩項之間插入個數(shù),使這個數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項和為.

 

查看答案和解析>>

一、選擇題

1.選D。提示:在映射f作用下,四邊形ABCD整體平移,面積不變

2,4,6

3.選B。提示:3的對面的數(shù)字是6,4 的對面的數(shù)字是2,故。

4.選B。提示:設A∪B元素個數(shù)為y,可知10≤y≤16, y∈N,又由x = 18-y可得。

5.選A。提示: 可知一條對稱軸。

6.選A。提示:依題意:課外興趣味小組由4名女生2名男生組成,共有種選法.其概率為

7.選C。提示:設代入,記,

,,。

8.選A。提示:  

9.選B。提示:原方程兩邊立方并整理得,,顯然,,由于 上是增函數(shù),且,,所以。

10.選C。提示:①正確;②正確,即為公垂線AB的中垂面;③正確,過AB中點 的平行線,則的平分線符合條件;④不正確,關(guān)于對稱的兩條異面線段的中點與共線。

二、填空題

11.。提示:最小系數(shù)為。

12.。提示:,

13.11.提示:,,取

14.。提示:由已知,,即,由線性規(guī)劃知識知,當,達到最大值

15.。提示:令,則,因為,所以

  • 0

    1

    2

     

     

     

     

     

     

           。

    17.。提示:令,得;令,得;令,得;令,得;故

    三、解答題

    18.解:(I)

    ――――7分

    (II)因為為銳角,且,所以。――――9分

    ――14分

    19.解:(I)因為平面

    所以平面平面,

    ,所以平面,

    ,又

    所以平面;――――4分

    (II)因為,所以四邊形為 

    菱形,

    ,又中點,知。

    中點,則平面,從而面

           過,則,

           在中,,故,

           即到平面的距離為。――――9分

           (III)過,連,則

           從而為二面角的平面角,

           在中,,所以,

    中,,

           故二面角的大小為。14分

     

           解法2:(I)如圖,取的中點,則,因為,

           所以,又平面,

           以軸建立空間坐標系,

           則,,,

    ,,

    ,,

    ,由,知,

           又,從而平面;――――4分

           (II)由,得。

           設平面的法向量為,,,所以

    ,設,則

           所以點到平面的距離。――9分

           (III)再設平面的法向量為,,

           所以

    ,設,則,

           故,根據(jù)法向量的方向,

           可知二面角的大小為。――――14分

    20.解:(I)設,則,因為 ,可得;又由,

           可得點的軌跡的方程為。――――6分(沒有扣1分)

           (II)假設存在直線,代入并整理得

    ,――――8分

           設,則   ――――10分

           又

          

    ,解得――――13分

           特別地,若,代入得,,此方程無解,即

           綜上,的斜率的取值范圍是。――――14分

    21.解:(I)

           (1)當時,函數(shù)增函數(shù),

           此時,

    ,所以;――2分

           (2)當時,函數(shù)減函數(shù),此時,,

    ,所以;――――4分

           (3)當時,若,則,有;

           若,則,有;

           因此,,――――6分

           而,

           故當時,,有;

           當時,,有;――――8分

    綜上所述:。――――10分

           (II)畫出的圖象,如右圖。――――12分

           數(shù)形結(jié)合,可得。――――14分

    22.解: (Ⅰ)先用數(shù)學歸納法證明,.

           (1)當n=1時,由已知得結(jié)論成立;

           (2)假設當n=k時,結(jié)論成立,即.則當n=k+1時,

           因為0<x<1時,,所以f(x)在(0,1)上是增函數(shù).

           又f(x)在上連續(xù),所以f(0)<f()<f(1),即0<.

           故當n=k+1時,結(jié)論也成立. 即對于一切正整數(shù)都成立.――――4分

           又由, 得,從而.

           綜上可知――――6分

           (Ⅱ)構(gòu)造函數(shù)g(x)=-f(x)= , 0<x<1,

           由,知g(x)在(0,1)上增函數(shù).

           又g(x)在上連續(xù),所以g(x)>g(0)=0.

        因為,所以,即>0,從而――――10分

           (Ⅲ) 因為 ,所以, ,

           所以   ――――① , ――――12分

           由(Ⅱ)知:,  所以= ,

           因為, n≥2,

        所以 <<=――――② .  ――――14分

           由①② 兩式可知: .――――16分


    同步練習冊答案