4.若的值為 查看更多

     

    題目列表(包括答案和解析)

    的值為(       )

    A.                 B.               C.              D.

     

    查看答案和解析>>

    的值為                    (    )

        A.             B.           C.             D.

     

    查看答案和解析>>

    的值為                                   (    )

           A.                      B.                   C.                      D.

     

    查看答案和解析>>

     的值為(   )

    A.-2    B. 2    C.-1    D. 1

     

    查看答案和解析>>

    +的值為       (    )

        A.1              B.129            C.128            D.127

     

    查看答案和解析>>

     

    一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

    1―6BBCDBD  7―12CACAAC

    二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

    13.0.8;

    14.

    15.; 

    16.①③

    三、解答題:

    17.解:(1)由,

           得

          

           由正弦定得,得

          

           又B

          

           又

           又      6分

       (2)

           由已知

                 9分

           當(dāng)

           因此,當(dāng)時(shí),

          

           當(dāng),

               12分

    18.解:(1)依題意,甲答對(duì)主式題數(shù)的可能取值為0,1,2,3,則

          

          

          

                  4分

           的分布列為

          

    0

    1

    2

    3

    P

           甲答對(duì)試題數(shù)的數(shù)學(xué)期望為

             6分

       (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

          

              9分

           因?yàn)槭录嗀、B相互獨(dú)立,

    * 甲、乙兩人考試均不合格的概率為

          

           *甲、乙兩人至少有一人考試合格的概率為

          

           答:甲、乙兩人于少有一人考試合格的概率為  12分

           另解:甲、乙兩人至少有一個(gè)考試合格的概率為

          

           答:甲、乙兩人于少有一人考試合格的概率為 

    19.解法一(1)過點(diǎn)E作EG交CF于G,

    //

           所以AD=EG,從而四邊形ADGE為平行四邊形

           故AE//DG    4分

           因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6fb4da3eeecf7f946ae49f5ccaba0f78.zip/74664/山東省聊城市2009年高三年級(jí)高考模擬(二)數(shù)學(xué)試題(理科).files/image232.gif" >平面DCF, 平面DCF,

           所以AE//平面DCF   6分

       (2)過點(diǎn)B作交FE的延長(zhǎng)線于H,

           連結(jié)AH,BH。

           由平面,

           所以為二面角A―EF―C的平面角

          

           又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6fb4da3eeecf7f946ae49f5ccaba0f78.zip/74664/山東省聊城市2009年高三年級(jí)高考模擬(二)數(shù)學(xué)試題(理科).files/image250.gif" >

           所以CF=4,從而BE=CG=3。

           于是    10分

           在

           則,

           因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6fb4da3eeecf7f946ae49f5ccaba0f78.zip/74664/山東省聊城市2009年高三年級(jí)高考模擬(二)數(shù)學(xué)試題(理科).files/image258.gif" >

               解法二:(1)如圖,以點(diǎn)C為坐標(biāo)原點(diǎn),

               建立空間直角坐標(biāo)系

               設(shè)

               則

              

               于是

         

         

         

         

        20.解:(1)當(dāng)時(shí),由已知得

              

               同理,可解得   4分

           (2)解法一:由題設(shè)

               當(dāng)

               代入上式,得     (*) 6分

               由(1)可得

               由(*)式可得

               由此猜想:   8分

               證明:①當(dāng)時(shí),結(jié)論成立。

               ②假設(shè)當(dāng)時(shí)結(jié)論成立,

               即

               那么,由(*)得

              

               所以當(dāng)時(shí)結(jié)論也成立,

               根據(jù)①和②可知,

               對(duì)所有正整數(shù)n都成立。

               因   12分

               解法二:由題設(shè)

               當(dāng)

               代入上式,得   6分

              

              

               -1的等差數(shù)列,

              

                  12分

        21.解:(1)由橢圓C的離心率

               得,其中

               橢圓C的左、右焦點(diǎn)分別為

               又點(diǎn)F2在線段PF1的中垂線上

              

               解得

                  4分

           (2)由題意,知直線MN存在斜率,設(shè)其方程為

               由

               消去

               設(shè)

               則

               且   8分

               由已知,

               得

               化簡(jiǎn),得     10分

              

               整理得

        * 直線MN的方程為,     

               因此直線MN過定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

        22.解:   2分

           (1)由已知,得上恒成立,

               即上恒成立

               又當(dāng)

                  4分

           (2)當(dāng)時(shí),

               在(1,2)上恒成立,

               這時(shí)在[1,2]上為增函數(shù)

                

               當(dāng)

               在(1,2)上恒成立,

               這時(shí)在[1,2]上為減函數(shù)

              

               當(dāng)時(shí),

               令 

               又 

                   9分

               綜上,在[1,2]上的最小值為

               ①當(dāng)

               ②當(dāng)時(shí),

               ③當(dāng)   10分

           (3)由(1),知函數(shù)上為增函數(shù),

               當(dāng)

              

               即恒成立    12分

              

              

              

               恒成立    14分


        同步練習(xí)冊(cè)答案