(3)在線段上是否存在一點(diǎn).使得∥平面PAE.并給出證明. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系中,定義以原點(diǎn)為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的“準(zhǔn)圓”.已知橢圓C:
x2
a2
+
y2
b2
=1
的離心率為
3
3
,直線l:2x-y+5=0與橢圓C的“準(zhǔn)圓”相切.
(1)求橢圓C的方程;
(2)P為橢圓C的右準(zhǔn)線上一點(diǎn),過點(diǎn)P作橢圓C的“準(zhǔn)圓”的切線段PQ,點(diǎn)F為橢圓C的右焦點(diǎn),求證:|PQ|=|PF|
(3)過點(diǎn)M(-
6
5
,0)
的直線與橢圓C交于A,B兩點(diǎn),為Q橢圓C的左頂點(diǎn),是否存在直線l使得△QAB為直角三角形?

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,—3)、N(5,1),若動點(diǎn)C滿足交于A、B兩點(diǎn)。

   (I)求證:

(2)在x軸上是否存在一點(diǎn),使得過點(diǎn)P的直線l交拋物線于D、E兩點(diǎn),并以線段DE為直徑的圓都過原點(diǎn)。若存在,請求出m的值,若不存在,請說明理由。

查看答案和解析>>

    在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知兩點(diǎn),若動點(diǎn)滿足且點(diǎn)的軌跡與拋物線交于、兩點(diǎn).

   (Ⅰ)求證:;

(Ⅱ)在軸上是否存在一點(diǎn),使得過點(diǎn)的直線交拋物線于于、兩點(diǎn),并以線段為直徑的圓都過原點(diǎn)。若存在,請求出的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,—3)、N(5,1),若動點(diǎn)C滿足交于A、B兩點(diǎn)。
(I)求證:;
(2)在x軸上是否存在一點(diǎn),使得過點(diǎn)P的直線l交拋物線于D、E兩點(diǎn),并以線段DE為直徑的圓都過原點(diǎn)。若存在,請求出m的值,若不存在,請說明理由。

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3),N(5,1),若動點(diǎn)C滿足數(shù)學(xué)公式=t數(shù)學(xué)公式且點(diǎn)C的軌跡與拋物線y2=4x交于A,B兩點(diǎn).
(1)求證:數(shù)學(xué)公式數(shù)學(xué)公式;
(2)在x軸上是否存在一點(diǎn)P(m,0)(m≠0),使得過點(diǎn)P的直線l交拋物線y2=4x于D,E兩點(diǎn),并以線段DE為直徑的圓都過原點(diǎn).若存在,請求出m的值及圓心M的軌跡方程;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案