(2)若.求的值.學科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)[來源:學.科.網(wǎng)Z.X.X.K]

分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的取值范圍;

(2)設過定點Q(0,2)的直線與橢圓交于不同的兩點M、N,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

(3)設是它的兩個頂點,直線AB相交于點D,與橢圓相交于E、F兩點.求四邊形面積的最大值.

 

查看答案和解析>>

(本題滿分10分)[來源:學#科#網(wǎng)]

已知

(1)若,求實數(shù)的值;

(2)若的充分條件,求實數(shù)的取值范圍.

 

查看答案和解析>>

(本題滿分10分)[來源:學#科#網(wǎng)]
已知
(1)若,求實數(shù)的值;
2)若的充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

(12分)已知函數(shù)處取得極值.

(Ⅰ)求實數(shù)的值;[來源:學+科+網(wǎng)]

(Ⅱ)若關于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

 

查看答案和解析>>

(12分)已知函數(shù)處取得極值.

(Ⅰ)求實數(shù)的值;[來源:學+科+網(wǎng)]

(Ⅱ)若關于的方程在區(qū)間上恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍.

 

查看答案和解析>>

或7                   ………………………………14分

16.(本小題滿分14分)

(1)證明:E、P分別為AC、A′C的中點,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)證明:在△A′EC中,P為A′C的中點,∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

                    …………………………………………15分

(本題也可以利用特征三角形中的有關數(shù)據(jù)直接求得)

18.(本小題滿分15分)

(1)延長BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    當,

,            

…………………………………………15分

(3)

設上式為 ,假設取正實數(shù),則?

時,,遞減;

,遞增. ……………………………………12分

                

    

∴不存在正整數(shù),使得

                  …………………………………………16分

,顯然成立             ……………………………………12分

時,

使不等式成立的自然數(shù)n恰有4個的正整數(shù)p值為3

                          ……………………………………………16分

 

 

 

 

 

 

 

泰州市2008~2009學年度第二學期期初聯(lián)考

高三數(shù)學試題參考答案

附加題部分

度單位.(1),,由

所以

為圓的直角坐標方程.  ……………………………………3分

同理為圓的直角坐標方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標方程為. …………………………10分

D.證明:(1)因為

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,……………………………………8分

    三式相加即得……………………………10分

22.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個曾經(jīng)參加過數(shù)學研究性學習活動的同學的概率為

(1),,,

,

              ……………………………………3分

(2)平面BDD1的一個法向量為

設平面BFC1的法向量為

得平面BFC1的一個法向量

∴所求的余弦值為                     ……………………………………6分

(3)設

,由

時,

時,∴   ……………………………………10分

 


同步練習冊答案